Curvature Estimates for Stable Minimal Triple Junction Surfaces

Gaoming Wang

The Chinese University of Hong Kong

July 7, 2021

Gaoming Wang (CUHK) [Curvature Estimates \(Second Part\)](#page-19-0) July 7, 2021 1/20

 Ω

K ロ ⊁ K 伊 ⊁ K 毛

¹ [Basic Facts about minimal triple junction surfaces](#page-2-0)

2 [Curvature estimate of minimal triple junction surfaces](#page-15-0)

³ [Generalized Bernstein Theorem](#page-15-0)

つへへ

K ロ ⊁ K 倒 ≯ K 差 ≯ K

Definition (Triple Junction Surfaces)

Let $(\Sigma^{(i)}, \partial \Sigma^{(i)})_{i=1,2,3}$ be three surfaces with boundary in \mathbb{R}^3 . We call the union $\Sigma = \bigcup_{i=1}^{3} \Sigma^{(i)}$ is a *triple junction surface* in \mathbb{R}^3 if these surfaces $\Sigma^{(i)}$ have the same boundary, i.e. $\partial \Sigma^{(1)} = \partial \Sigma^{(2)} = \partial \Sigma^{(3)}$ in \mathbb{R}^3 . We write Γ as their common boundary $\Gamma = \Sigma^{(i)}$ for $i = 1, 2, 3$. We write it as (Σ, Γ) .

Examples (<https://faculty.math.illinois.edu/~jms/Images/>)

メロト メ団ト メミトメ

- **L. Simon (1993):** $C^{1,\alpha}$ regularity near cylindrical tangent cones.
- B. Krummel (2014): Higher regularity of minimal submanifolds with common boundary.

- A. Freier, D. Depner, H. Garcke: Mean curvature flow with triple junctions.
- F. Schulze, B. White (2020): Regularity of mean curvature flow with triple edges.
- A lot of works on the network flow.

メロト メ団ト メミトメ

Definition (Minimal triple junction surfaces)

 (Σ,Γ) is called a *minimal triple junction surface* if the mean curvature vector of each piece of surface $\Sigma^{(i)}$ vanishes identically and they make a same angle $\frac{2\pi}{3}$ with each other along Γ . I.e. $\vec{H}_{\Sigma^{(i)}} \equiv 0$ and $\angle(\tau_i, \tau_j) = \frac{2\pi}{3}$ where τ_i being the outer conormal of Γ in $\Sigma^{(i)}$.

Proposition

 (Σ,Γ) is a minimal triple junction surface if and only if one of the following holds.

- \bullet Σ is a critical point of area function.
- The coordinate the function $x_j^{(i)}$ $j = 1, 2, 3$ is harmonic on $\Sigma^{(i)}$ and their sum of outer normal derivatives is zero along Γ. I.e. $\Delta_{\Sigma^{(i)}} x_j^{(i)} = 0$ and $\sum_{i=1}^3 \frac{\partial}{\partial \tau_i} x_j^{(i)} = 0$ for $j = 1, 2, 3$ along Γ.

First variation formula

$$
\delta \Sigma(X) := \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \text{Area}(\Sigma_t) = -\sum_{i=1}^3 \int_{\Sigma^{(i)}} \vec{H}_{\Sigma^{(i)}} \cdot X dA + \sum_{i=1}^3 \int_{\Gamma} X \cdot \tau^{(i)} ds
$$

 Ω

≮ロト ⊀倒ト ⊀ ミト

Some examples of minimal triple junction surfaces

Figure: Two kinds of *Y* -shaped catenoid

 299

K ロ ト K 御 ト K ミ ト

Figure: *Y* -shaped bent helicoid and usual helicoid

 QQ

K ロ ト K 倒 ト K 目

Distance function on Σ

Let $d^{(i)}(\cdot, \cdot)$ be the distance function on $\Sigma^{(i)}$. Define distance function *d*(*x*, *y*) on Σ by the following

$$
d(x, y) := \inf \left\{ \sum_{k=1}^{l-1} d^{(i_k)}(x_k, x_{k+1}) : x_0 = x, x_{l+1} = y, x_1, \dots, x_l \in \Gamma, \right\}
$$

$$
i_0 = i, i_{l-1} = j, 1 \le i_1, \dots, i_{l-2} \le 3, \text{ for } l \in \mathbb{N} \right\}
$$

Define $d_{\Gamma}(x) := \inf_{y \in \Gamma} d(x, y)$ for $x \in \Sigma$, $T_r(\Gamma) := \{p \in \Sigma : d_{\Gamma}(p) < r\}.$

Proposition

There is no compact complete (in the sense of distance *d*) minimal triple junction surface in \mathbb{R}^3 .

 Ω

 $A \square$ B A B B A B B

Function spaces

$$
C^{k}(\Sigma) := \{f = (f^{(1)}, f^{(2)}, f^{(3)}) \in C^{k}(\Sigma^{(1)}) \times C^{k}(\Sigma^{(2)}) \times C^{k}(\Sigma^{(3)})\}.
$$

\n
$$
C_{1}^{k}(\Sigma) := \{f = (f^{(1)}, f^{(2)}, f^{(3)}) \in C^{k}(\Sigma) : f^{(i)} = f^{(j)}, \forall 1 \le i, j \le 3 \text{ on } \Gamma\}.
$$

\n
$$
C_{2}^{k}(\Sigma) := \{f = (f^{(1)}, f^{(2)}, f^{(3)}) \in C^{k}(\Sigma) : \sum_{i=1}^{3} f^{(i)} = 0 \text{ on } \Gamma\}.
$$

\n
$$
W^{k, p}(\Sigma) := \{f = (f^{(1)}, f^{(2)}, f^{(3)}) \in W^{k, p}(\Sigma^{(1)}) \times W^{k, p}(\Sigma^{(2)}) \times W^{k, p}(\Sigma^{(3)})\}.
$$

\n
$$
W_{1}^{k, p}(\Sigma) := \{f = (f^{(1)}, f^{(2)}, f^{(3)}) \in W^{k, p}(\Sigma) : f^{(i)} = f^{(j)}, \forall 1 \le i, j \le 3 \text{ on } \Gamma\}.
$$

\n
$$
W_{2}^{k, p}(\Sigma) := \{f = (f^{(1)}, f^{(2)}, f^{(3)}) \in W^{k, p}(\Sigma), \sum_{i=1}^{3} f^{(i)} = 0 \text{ on } \Gamma\}.
$$

Examples

- If *f* is a C^k function in \mathbb{R}^3 , then $f|_{\Sigma} := (f|_{\Sigma^{(1)}}, f|_{\Sigma^{(2)}}, f|_{\Sigma^3}) \in C_1^k(\Sigma)$.
- If *V* is a C^k vector field in \mathbb{R}^3 , then $V \cdot v := (V \cdot v^{(1)}, V \cdot v^{(2)}, V \cdot v^{(3)}) \in C_2^k(\Sigma)$ if $\sum_{i=1}^{3} v^{(i)} = 0$ along Γ.

 Ω

K ロ ⊁ K 個 ≯ K ミ ▶

Notations and assumption

- From now on, for the triple junction surface (Σ,Γ), we will only consider each $\Sigma^{(i)}$ is orientable and has only one boundary component *∂*Σ (*i*) = Γ.
- We will choose $v^{(i)}$ be the normal vector field on $\Sigma^{(i)}$ such that $\Sigma_{i=1}^3 v^{(i)} = 0$ along Γ. Write $ν = (ν⁽¹⁾, ν⁽²⁾, ν⁽³⁾)$ for short.

Integral convention

For any $f ∈ C^k(Σ)$, we use the following short notations.

$$
\int_{\Sigma} f := \sum_{i=1}^{3} \int_{\Sigma^{(i)}} f^{(i)} dA^{(i)} \qquad \int_{\Gamma} f := \int_{\Gamma} \sum_{i=1}^{3} f^{(i)} d s_{\Gamma}
$$

Example.

$$
\delta \Sigma(X) = -\int_{\Sigma} H_{\Sigma} \phi + \int_{\Gamma} X \cdot \tau
$$

 2040

K ロ ⊁ K 倒 ▶ K ミ ▶ K

Second variation formula for minimal triple junction surfaces

Let (Σ,Γ) be a minimal triple junction surface in \mathbb{R}^3 , then

$$
\frac{d^2}{dt^2}\bigg|_{t=0} \text{Area}(\Sigma_t) = \int_{\Sigma} |\nabla_{\Sigma} \phi|^2 - |A_{\Sigma}|^2 \phi^2 - \int_{\Gamma} \phi^2 H_{\Gamma} \cdot \tau
$$

with $\phi = X \cdot v$ which has compact support, \bm{H}_{Γ} , the geodesic curvature vector of Γ in \mathbb{R}^3 .

Stable minimal triple junction surfaces

We say (Σ,Γ) $\subset \mathbb{R}^3$ is a stable minimal triple junction surface if $\frac{d^2}{d\vec{k}}$ $\frac{d^2}{dt^2}|_{t=0}$ Area(Σ_t) ≥ 0 for any variation Σ_t of Σ with compact support.

Stability inequality

If (Σ,Γ) is a stable minimal triple junction surface in \mathbb{R}^3 , then for any $\phi \in W_2^{1,2}(\Sigma)$ with compact support,

$$
\int_{\Sigma} |A_{\Sigma}|^2 \phi^2 + \int_{\Gamma} \phi^2 H_{\Gamma} \cdot \tau \le \int_{\Sigma} |\nabla_{\Sigma} \phi|^2
$$

 \overline{CD}

Theorem

Suppose (Σ, Γ) is a stable minimal triple junction surface. Then for any $\phi \in W^{1,2}(\Sigma) \cap L^{\infty}(\Sigma)$ such that $\text{sign}(\phi) |A_{\Sigma}|^{p-1} |\phi|^p \in W_2^{1,2}(\Sigma)$, $p \in (1, \frac{5}{4})$, we have (C_1, C_2) does not depend on *p*.)

$$
\int_{\Sigma} |A_{\Sigma}|^{2p} |\phi|^{2p} \le C_1 \int_{\Sigma} |A_{\Sigma}|^{2p-2} |\phi|^{2p-2} |\nabla_{\Sigma} \phi|^{2} \n+ \int_{\Gamma} \left[\frac{p-1}{2} \left| \frac{\partial}{\partial \tau} \log |A_{\Sigma}| \right| - H_{\Gamma} \cdot \tau \right] |A_{\Sigma}|^{2p-2} |\phi|^{2p}
$$

If in addition, $\phi \in W^{1,2p}(\Sigma) \cap L^{\infty}(\Sigma)$, then

$$
\int_{\Sigma} |A_{\Sigma}|^{2p} |\phi|^{2p}
$$
\n
$$
\leq C_1 \int_{\Sigma} |\nabla_{\Sigma} \phi|^{2p} + C_2 \int_{\Gamma} |(p-1)| \frac{\partial}{\partial \tau} \log |A_{\Sigma}| \left| -H_{\Gamma} \cdot \tau \right| |A_{\Sigma}|^{2p-2} |\phi|^{2p}
$$

 Ω

イロト イ何ト イヨト

Sketch proof of L^p estimate

Change $\phi \to \phi |A|^{p-1}$ in stability inequality $(\int_{\Sigma} |A|^2 \phi^2 + \int_{\Gamma} \phi H_{\Gamma} \cdot \tau \leq \int_{\Sigma} |\nabla_{\Sigma} \phi|^2)$ to get

$$
\int_{\Sigma} |A|^{2p} \phi^{2} \le (p-1)^{2} \int_{\Sigma} |A|^{2p-4} |\nabla_{\Sigma}|A||^{2} \phi^{2} + |A|^{2p-2} |\nabla_{\Sigma} \phi|^{2} \n+ 2(p-1) \int_{\Sigma} |A|^{2p-3} \phi \nabla_{\Sigma} |A| \cdot \nabla_{\Sigma} \phi \left[-\int_{\Gamma} |A|^{2p-2} \phi^{2} H_{\Gamma} \cdot \mathbf{r} \right]
$$

Multiply Simon's identity $(|\nabla_{\Sigma}|A||^2 = |A|\Delta|A| + |A|^4)$ by $|A|^{2p-4}\phi^2$ and integrate

$$
\int_{\Sigma} |A|^{2p-4} |\nabla_{\Sigma}|A||^2 \phi^2 = \int_{\Sigma} |A|^{2p} \phi^2 - 2\phi |A|^{2p-3} \nabla_{\Sigma} \phi \cdot \nabla_{\Sigma} |A|
$$

$$
-(2p-3) \int_{\Sigma} |A|^{2p-4} |\nabla_{\Sigma}|A||^2 \phi^2 \left(\int_{\Gamma} |A|^{2p-2} \frac{\partial}{\partial \tau} \log |A| \phi^2 \right).
$$

• Combining last two inequalities will give

$$
\int_{\Sigma} |A|^{2p} \phi^2 \le 3 \int_{\Sigma} |A|^{2p-2} |\nabla_{\Sigma} \phi|^2
$$

$$
+ \frac{p-1}{2} \int_{\Gamma} |A|^{2p-2} \phi^2 \frac{\partial}{\partial \tau} \log|A| - \int_{\Gamma} |A|^{2p-2} \phi^2 H_{\Gamma} \cdot \tau.
$$

K ロ ▶ K 何 ▶ K 급

Change $\phi \rightarrow \text{sign}(\phi) |\phi|^p$ in the last inequality (condition for ϕ is $\text{sign}(\phi) |A|^{p-1} |\phi|^p \in W_2^{1,2}(\Sigma)$

$$
\int_{\Sigma} |A|^{2p} |\phi|^{2p} \le 6 \int_{\Sigma} |A|^{2p-2} |\phi|^{2p-2} |\nabla_{\Sigma} \phi|^{2}
$$

$$
+ \int_{\Gamma} \left[\frac{p-1}{2} \left| \frac{\partial}{\partial \tau} \log |A| \right| - H_{\Gamma} \cdot \tau \right] |A|^{2p-2} |\phi|^{2p}.
$$

If $\phi \in W^{1,2p}(\Sigma)$, we can apply Young's inequality when p small,

$$
\int_{\Sigma} |A|^{2p} |\phi|^{2p} \le C_1 \int_{\Sigma} |\nabla_{\Sigma} \phi|^{2p} \left(C_2 \int_{\Gamma} \left[\frac{p-1}{2} \left| \frac{\partial}{\partial \tau} \log |A| \right| - H_{\Gamma} \cdot \tau \right] |A|^{2p-2} |\phi|^{2p} \right).
$$

 Ω

K ロ ト K 倒 ト K 差 ト K

Theorem (Γ compact)

Let (Σ,Γ) be a minimal triple junction surface in \mathbb{R}^3 . Suppose Σ is complete, stable and has quadratic area growth. Furthermore, we assume $Γ$ is compact, then each $Σ⁽ⁱ⁾$ is flat.

Theorem (Γ straight line)

Let (Σ,Γ) be a minimal triple junction surface in \mathbb{R}^3 . Suppose Σ is complete, stable and has quadratic area growth. Furthermore, we assume $Γ$ is a straight line, then each $Σ⁽ⁱ⁾$ is flat.

 Ω

K ロ ▶ K 何 ▶ K 급

Proof of Theorem when Γ compact

The case of none of $\Sigma^{(i)}$ is flat.

Write L^p estimate in the following ways,

$$
\int_{\Sigma} |A_{\Sigma}|^{2p} |\phi|^{2p} \le C_1 I + II - III
$$

\n
$$
I := \int_{\Sigma} |A_{\Sigma}|^{2p-2} |\phi|^{2p-2} |\nabla_{\Sigma} \phi|^{2}
$$

\n
$$
II := \int_{\Gamma} \frac{p-1}{2} \left| \frac{\partial}{\partial \tau} \log |A_{\Sigma}| \right| |A|^{2p-2} |\phi|^{2p}
$$

\n
$$
III := \int_{\Gamma} H_{\Gamma} \cdot \tau |A_{\Sigma}|^{2p-2} |\phi|^{2p}
$$

Fix three nonzero constants $c^{(i)}$ such that $\sum_{i=1}^{3} c^{(i)} = 0$. ρ_r , cut-off function supported in $T_{2r}(\Gamma)$ and equal to 1 in $T_r(\Gamma)$. $g^{(i)} = \prod_{j \neq i} |A_{\Sigma^{(j)}}|$. Choose ϕ as

$$
\phi^{(i)} = \text{sign}(c^{(i)}) \left| c^{(i)} \right|^{\frac{1}{p}} \left(\rho_1(g^{(i)})^{\frac{p-1}{p}} + \rho_r - \rho_1 \right)
$$

Check $\text{sign}(\phi) \left| \phi \right|^{p} |A_{\Sigma}|^{p-1} \in W_2^{1,2}(\Sigma)$.

 Ω

K ロ ⊁ K 個 ≯ K ミ ▶

Proof of Theorem when Γ compact

Choose of
$$
\phi
$$
, $\phi^{(i)} = sign(c^{(i)}) | c^{(i)} |^{\frac{1}{p}} (p_1(g^{(i)})^{\frac{p-1}{p}} + p_r - p_1)$

Estimate

$$
III = \int_{\Gamma} H_{\Gamma} \cdot \tau |A_{\Sigma}|^{2p-2} |\phi|^{2p} = \int_{\Gamma} H_{\Gamma} \cdot \tau c^{2} \prod_{i=1}^{3} |A_{\Sigma^{(i)}}|^{2p-2}
$$

Adjust $c^{(i)}$ to make III ≥ 0.

o Estimate

$$
II = \int_{\Gamma} \frac{p-1}{2} \left| \frac{\partial}{\partial \tau} \log |A_{\Sigma}| \right| |A|^{2p-2} |\phi|^{2p}
$$

- Choose *p* small to make sure II < *ε*.
- Estimate

$$
I = \int_{\Sigma} |A_{\Sigma}|^{2p-2} |\phi|^{2p-2} |\nabla_{\Sigma} \phi|^{2} = \left(\int_{S} + \int_{T_{2}(\Gamma) \backslash S} + \int_{T_{2r}(\Gamma) \backslash T_{r}(\Gamma)} \right) |A_{\Sigma}|^{2p-2} |\phi|^{2p-2} |\nabla_{\Sigma} \phi|^{2}
$$

Split I = I'(Singularity) +I₁(Regular and near Γ) +I₂(Regular and far from Γ)

- choose singular region small enough to make sure $I' < \varepsilon$.
- choose *p* closed to 1 enough to make sure $I_1 < \varepsilon$. From now on, we will fix the choice of *p*.
- Choose *r* large enough to make sure $I_2 < \varepsilon$.

 Ω

メロメ メ御 メメ ミメ メ毛メ

Special case in the proof.

When one of the $\Sigma^{(i)}$ is flat, says $\Sigma^{(3)}$ is flat, we need to choose $\phi^{(3)}$ \equiv 0 to make ϕ satisfies compatible condition. This time we cannot make III>0 in general since $c^{(i)}$ is basically fixed upto a scaling.

We need the following lemma to deal with this case. (Follow from B. White's estimate of total curvature of surfaces)

Lemma

For each Σ ⁽ⁱ⁾ with boundary Γ, we have

$$
\int_{\Gamma} -H_{\Gamma} \cdot \tau^{(i)} \le \int_{\Sigma^{(i)}} -K_{\Sigma^{(i)}}
$$

Choice of ϕ , $\phi^{(i)} = \text{sign}(c^{(i)}) | c^{(i)} |$ $\frac{1}{p}\left(\rho_1 | A_{\Sigma^{(j)}}\right)$ $\frac{p-1}{p}$ + $\rho_r - \rho_1$ with (*i*, *j*) = (1, 2), (2, 1) Note

$$
\int_{\Sigma} c^2 |A_{\Sigma}|^{2p} \simeq \int_{\Sigma} c^2 |A_{\Sigma}|^2 = -2 \int_{\Sigma} c^2 K_{\Sigma} \ge - \int_{\Gamma} \boldsymbol{H}_{\Gamma} \cdot \tau c^2 \simeq - \int_{\Gamma} \boldsymbol{H}_{\Gamma} \cdot \tau |A_{\Sigma}|^{2p-2} |\phi|^{2p}
$$

We can control III by $\int_{\Sigma} |A_{\Sigma}|^{2p} |\phi|^{2p}$ when p small.

 2040

K ロ ト K 倒 ト K 差 ト K

Corollary

Let P be a plane in \mathbb{R}^3 . Then there is no (oriented) stable complete minimal surface Σ with boundary *∂*Σ ⊂ *P*, *∂*Σ compact and Σ has quadratic area growth and has angle *^π* 3 with *P* along *∂*Σ.

Remark

Recently, I've learned that Han Hong and Artur B. Saturnino gave more precise curvature estimates over capillary surface including capillary minimal surface. Their results are stronger than above corollary.

 Ω

K ロ ▶ K 何 ▶ K 日

Thank You!

 299

K ロ X イ団 X スミ X X