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Triple Junction Surfaces in R3

Definition (Triple Junction Surfaces)

Let (Σ(i ),∂Σ(i ))i=1,2,3 be three surfaces with boundary in R3. We call the union
Σ=∪3

i=1Σ
(i ) is a triple junction surface in R3 if these surfaces Σ(i ) have the same

boundary, i.e. ∂Σ(1) = ∂Σ(2) = ∂Σ(3) in R3. We write Γ as their common boundary Γ=Σ(i )

for i = 1,2,3. We write it as (Σ,Γ).

Examples (https://faculty.math.illinois.edu/~jms/Images/)
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Some results related to triple junction surfaces

L. Simon (1993): C 1,α regularity near cylindrical tangent cones.

B. Krummel (2014): Higher regularity of minimal submanifolds with common
boundary.

Stationary varifold

C 1,γ regularity

Smooth (Analytic)

A. Freier, D. Depner, H. Garcke: Mean curvature flow with triple junctions.

F. Schulze, B. White (2020): Regularity of mean curvature flow with triple edges.

A lot of works on the network flow.
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Minimal triple junction surfaces in R3

Definition (Minimal triple junction surfaces)

(Σ,Γ) is called a minimal triple junction surface if the mean curvature vector of each
piece of surface Σ(i ) vanishes identically and they make a same angle 2π

3 with each other
along Γ. I.e. ~HΣ(i ) ≡ 0 and ∠(τi ,τ j ) = 2π

3 where τi being the outer conormal of Γ in Σ(i ).

Proposition
(Σ,Γ) is a minimal triple junction surface if and only if one of the following holds.

Σ is a critical point of area function.

The coordinate the function x(i )
j j = 1,2,3 is harmonic on Σ(i ) and their sum of outer

normal derivatives is zero along Γ. I.e. ∆Σ(i ) x(i )
j = 0 and

∑3
i=1

∂
∂τi

x(i )
j = 0 for j = 1,2,3

along Γ.

First variation formula

δΣ(X ) := d
dt

∣∣∣∣
t=0

Area(Σt ) =−
3∑

i=1

∫
Σ(i )

~HΣ(i ) ·X d A+
3∑

i=1

∫
Γ

X ·τ(i )d s
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Some examples of minimal triple junction surfaces

Σ(1)

Σ(2)

Σ(3)

Σ(1)

Σ(3)

Σ(1)

Figure: Two kinds of Y -shaped catenoid
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Some examples of minimal triple junction surfaces

Figure: Y -shaped bent helicoid and usual helicoid
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Basic properties of minimal triple junction surfaces

Distance function on Σ

Let d (i )(·, ·) be the distance function on Σ(i ).
Define distance function d(x, y) on Σ by the following

d(x, y) := inf

{
l−1∑
k=1

d (ik )(xk , xk+1) : x0 = x, xl+1 = y, x1, · · · , xl ∈ Γ,

i0 = i , il−1 = j ,1 ≤ i1, · · · , il−2 ≤ 3, for l ∈N
}

Define dΓ(x) := infy∈Γd(x, y) for x ∈Σ, Tr (Γ) := {p ∈Σ : dΓ(p) < r }.

Proposition
There is no compact complete (in the sense of distance d) minimal triple junction surface
in R3.
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Useful Function spaces

Function spaces

C k (Σ) := { f = ( f (1), f (2), f (3)) ∈C k (Σ(1))×C k (Σ(2))×C k (Σ(3))}.

C k
1 (Σ) := { f = ( f (1), f (2), f (3)) ∈C k (Σ) : f (i ) = f ( j ),∀1 ≤ i , j ≤ 3 on Γ}.

C k
2 (Σ) := { f = ( f (1), f (2), f (3)) ∈C k (Σ) :

∑3
i=1 f (i ) = 0 on Γ}.

W k,p (Σ) := { f = ( f (1), f (2), f (3)) ∈W k,p (Σ(1))×W k,p (Σ(2))×W k,p (Σ(3))}.

W
k,p
1 (Σ) := { f = ( f (1), f (2), f (3)) ∈W k,p (Σ) : f (i ) = f ( j ),∀1 ≤ i , j ≤ 3 on Γ}.

W
k,p
2 (Σ) := { f = ( f (1), f (2), f (3)) ∈W k,p (Σ),

∑3
i=1 f (i ) = 0 on Γ}.

Examples

If f is a C k function in R3, then f |Σ := ( f |Σ(1) , f |Σ(2) , f |Σ3 ) ∈C k
1 (Σ).

If V is a C k vector field in R3, then V ·ν := (V ·ν(1),V ·ν(2),V ·ν(3)) ∈C k
2 (Σ) if∑3

i=1ν
(i ) = 0 along Γ.
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Notations

Notations and assumption

From now on, for the triple junction surface (Σ,Γ), we will only consider each Σ(i ) is
orientable and has only one boundary component ∂Σ(i ) = Γ.
We will choose ν(i ) be the normal vector field on Σ(i ) such that

∑3
i=1ν

(i ) = 0 along
Γ. Write ν= (ν(1),ν(2),ν(3)) for short.

Integral convention

For any f ∈C k (Σ), we use the following short notations.∫
Σ

f :=
3∑

i=1

∫
Σ(i )

f (i )d A(i )
∫
Γ

f :=
∫
Γ

3∑
i=1

f (i )d sΓ

Example.

δΣ(X ) =−
∫
Σ

HΣφ+
∫
Γ

X ·τ
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Second variation formula and stability

Second variation formula for minimal triple junction surfaces

Let (Σ,Γ) be a minimal triple junction surface in R3, then

d2

dt 2

∣∣∣∣∣
t=0

Area(Σt ) =
∫
Σ

∣∣∇Σφ∣∣2 −|AΣ|2φ2 −
∫
Γ
φ2HΓ ·τ

with φ= X ·ν which has compact support, HΓ, the geodesic curvature vector of Γ in R3.

Stable minimal triple junction surfaces

We say (Σ,Γ) ⊂R3 is a stable minimal triple junction surface if d2

dt 2 |t=0Area(Σt ) ≥ 0 for any
variation Σt of Σ with compact support.

Stability inequality

If (Σ,Γ) is a stable minimal triple junction surface in R3, then for any φ ∈W 1,2
2 (Σ) with

compact support, ∫
Σ
|AΣ|2φ2 +

∫
Γ
φ2HΓ ·τ≤

∫
Σ

∣∣∇Σφ∣∣2
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Main Theorem. Lp curvature estimate

Theorem
Suppose (Σ,Γ) is a stable minimal triple junction surface. Then for any
φ ∈W 1,2(Σ)∩L∞(Σ) such that sign(φ) |AΣ|p−1

∣∣φ∣∣p ∈W 1,2
2 (Σ), p ∈ (1, 5

4 ), we have(C1,C2
does not depend on p.)∫

Σ
|AΣ|2p ∣∣φ∣∣2p ≤C1

∫
Σ
|AΣ|2p−2 ∣∣φ∣∣2p−2 ∣∣∇Σφ∣∣2

+
∫
Γ

[
p −1

2

∣∣∣∣ ∂∂τ log |AΣ|
∣∣∣∣−HΓ ·τ

]
|AΣ|2p−2 ∣∣φ∣∣2p

If in addition, φ ∈W 1,2p (Σ)∩L∞(Σ), then∫
Σ
|AΣ|2p ∣∣φ∣∣2p

≤C1

∫
Σ

∣∣∇Σφ∣∣2p +C2

∫
Γ

[
(p −1)

∣∣∣∣ ∂∂τ log |AΣ|
∣∣∣∣−HΓ ·τ

]
|AΣ|2p−2 ∣∣φ∣∣2p

Gaoming Wang (CUHK) Curvature Estimates (Second Part) July 7, 2021 12 / 20



Sketch proof of Lp estimate

Change φ→φ |A|p−1 in stability inequality (
∫
Σ |A|2φ2 +∫

ΓφHΓ ·τ≤
∫
Σ

∣∣∇Σφ∣∣2) to get∫
Σ
|A|2p φ2 ≤ (p −1)2

∫
Σ
|A|2p−4 |∇Σ |A||2φ2 +|A|2p−2 ∣∣∇Σφ∣∣2

+2(p −1)
∫
Σ
|A|2p−3φ∇Σ |A| ·∇Σφ−

∫
Γ
|A|2p−2φ2HΓ ·τ.

Multiply Simon’s identity (|∇Σ |A||2 = |A|∆ |A|+ |A|4) by |A|2p−4φ2 and integrate∫
Σ
|A|2p−4 |∇Σ |A||2φ2 =

∫
Σ
|A|2p φ2 −2φ |A|2p−3∇Σφ ·∇Σ |A|

−(2p −3)
∫
Σ
|A|2p−4 |∇Σ |A||2φ2 +

∫
Γ
|A|2p−2 ∂

∂τ
log |A|φ2.

Combining last two inequalities will give∫
Σ
|A|2p φ2 ≤ 3

∫
Σ
|A|2p−2 ∣∣∇Σφ∣∣2

+ p −1

2

∫
Γ
|A|2p−2φ2 ∂

∂τ
log |A|−

∫
Γ
|A|2p−2φ2HΓ ·τ.
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Sketch proof of Lp estimate (continuous)

Change φ→ sign(φ)
∣∣φ∣∣p in the last inequality (condition for φ is

sign(φ) |A|p−1
∣∣φ∣∣p ∈W 1,2

2 (Σ))∫
Σ
|A|2p ∣∣φ∣∣2p ≤ 6

∫
Σ
|A|2p−2 ∣∣φ∣∣2p−2 ∣∣∇Σφ∣∣2

+
∫
Γ

[
p −1

2

∣∣∣∣ ∂∂τ log |A|
∣∣∣∣−HΓ ·τ

]
|A|2p−2 ∣∣φ∣∣2p .

If φ ∈W 1,2p (Σ), we can apply Young’s inequality when p small,∫
Σ
|A|2p ∣∣φ∣∣2p ≤C1

∫
Σ

∣∣∇Σφ∣∣2p

+C2

∫
Γ

[
p −1

2

∣∣∣∣ ∂∂τ log |A|
∣∣∣∣−HΓ ·τ

]
|A|2p−2 ∣∣φ∣∣2p .
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Main Theorem. Generalized Bernstein Theorem

Theorem (Γ compact)

Let (Σ,Γ) be a minimal triple junction surface in R3. Suppose Σ is complete, stable and
has quadratic area growth. Furthermore, we assume Γ is compact, then each Σ(i ) is flat.

Theorem (Γ straight line)

Let (Σ,Γ) be a minimal triple junction surface in R3. Suppose Σ is complete, stable and
has quadratic area growth. Furthermore, we assume Γ is a straight line, then each Σ(i ) is
flat.
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Proof of Theorem when Γ compact

The case of none of Σ(i ) is flat.

Write Lp estimate in the following ways,∫
Σ
|AΣ|2p ∣∣φ∣∣2p ≤C1I+ II− III

I :=
∫
Σ
|AΣ|2p−2 ∣∣φ∣∣2p−2 ∣∣∇Σφ∣∣2

II :=
∫
Γ

p −1

2

∣∣∣∣ ∂∂τ log |AΣ|
∣∣∣∣ |A|2p−2 ∣∣φ∣∣2p

III :=
∫
Γ

HΓ ·τ |AΣ|2p−2 ∣∣φ∣∣2p

Fix three nonzero constants c(i ) such that
∑3

i=1 c(i ) = 0. ρr , cut-off function
supported in T2r (Γ) and equal to 1 in Tr (Γ). g (i ) =∏

j 6=i
∣∣AΣ( j )

∣∣. Choose φ as

φ(i ) = sign(c(i ))
∣∣∣c(i )

∣∣∣ 1
p

(
ρ1(g (i ))

p−1
p +ρr −ρ1

)
Check sign(φ)

∣∣φ∣∣p |AΣ|p−1 ∈W 1,2
2 (Σ).
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Proof of Theorem when Γ compact

Choose of φ, φ(i ) = sign(c(i ))
∣∣∣c(i )

∣∣∣ 1
p

(
ρ1(g (i ))

p−1
p +ρr −ρ1

)
Estimate

III =
∫
Γ

HΓ ·τ |AΣ|2p−2 ∣∣φ∣∣2p =
∫
Γ

HΓ ·τc2
3∏

i=1

∣∣AΣ(i )

∣∣2p−2

Adjust c(i ) to make III ≥ 0.

Estimate
II =

∫
Γ

p −1

2

∣∣∣∣ ∂∂τ log |AΣ|
∣∣∣∣ |A|2p−2 ∣∣φ∣∣2p

Choose p small to make sure II < ε.
Estimate

I =
∫
Σ
|AΣ|2p−2 ∣∣φ∣∣2p−2 ∣∣∇Σφ∣∣2 =

(∫
S
+

∫
T2(Γ)\S

+
∫

T2r (Γ)\Tr (Γ)

)
|AΣ|2p−2 ∣∣φ∣∣2p−2 ∣∣∇Σφ∣∣2

Split I = I′(Singularity) +I1(Regular and near Γ) +I2(Regular and far from Γ)
choose singular region small enough to make sure I′ < ε.
choose p closed to 1 enough to make sure I1 < ε. From now on, we will fix the choice
of p.
Choose r large enough to make sure I2 < ε.
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Special case in the proof.

When one of the Σ(i ) is flat, says Σ(3) is flat, we need to choose φ(3) ≡ 0 to make φ
satisfies compatible condition. This time we cannot make III > 0 in general since c(i ) is
basically fixed upto a scaling.
We need the following lemma to deal with this case. (Follow from B. White’s estimate of
total curvature of surfaces)

Lemma

For each Σ(i ) with boundary Γ, we have∫
Γ
−HΓ ·τ(i ) ≤

∫
Σ(i )

−KΣ(i )

Choice of φ, φ(i ) = sign(c(i ))
∣∣∣c(i )

∣∣∣ 1
p

(
ρ1

∣∣AΣ( j )

∣∣ p−1
p +ρr −ρ1

)
with (i , j ) = (1,2), (2,1)

Note ∫
Σ

c2 |AΣ|2p '
∫
Σ

c2 |AΣ|2 =−2
∫
Σ

c2KΣ ≥−
∫
Γ

HΓ ·τc2 '−
∫
Γ

HΓ ·τ |AΣ|2p−2 ∣∣φ∣∣2p

We can control III by
∫
Σ |AΣ|2p

∣∣φ∣∣2p when p small.
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Relation with the capillary minimal surface

Corollary

Let P be a plane in R3. Then there is no (oriented) stable complete minimal surface Σ
with boundary ∂Σ⊂ P , ∂Σ compact and Σ has quadratic area growth and has angle π

3
with P along ∂Σ.

Remark
Recently, I’ve learned that Han Hong and Artur B. Saturnino gave more precise curvature
estimates over capillary surface including capillary minimal surface. Their results are
stronger than above corollary.
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Thank You!
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