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Abstract

We develop the fundamental tools from functional analysis and partial differential equations

to study the geometric and analytic aspects of triple junction hypersurfaces, a special class of

singular manifolds whose boundaries are identified in a particular manner. We define some

useful spaces on such singular objects and describe a kind of second-order elliptic operator

defined on these function spaces. We extend the standard results in PDE theory for second-

order elliptic operators on smooth Riemannian manifolds, including existence, regularity,

spectrum theory, etc., to our singular setting. After that, we mention some applications of

this theory, including the study of the Morse index for minimal hypersurfaces with triple

junctions and the conformal structure on surfaces with triple junctions.

Our new PDE theory is essential to the study of immersed minimal hypersurfaces with

triple junctions. In [Wan22], we have observed the appearance of such function spaces as

an example. This motivates our study of these function spaces in a more general setting.

In [Wan21a, Wan21b], we note that it is vital to have a regularity result so that we can use

the powerful tools from elliptic PDEs. This is another motivation for the general theory of

elliptic partial differential theory on triple junction hypersurfaces.

Once we have established the regularity, almost all PDE tools can be applied to triple

junction hypersurfaces. In particular, we expect these results can also be extended to

other geometric settings. For instance, we may consider defining heat-type equations on

hypersurfaces with triple junctions. We may also consider more irregular hypersurfaces like

surface clusters.
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摘要

從泛函分析與偏微分方程中，我們建立了一套基本的工具去從幾何與分析的方面去研究三

連接超曲面（triple junction hypersurfaces）的性質。其中三連接超曲面是指一種特殊的奇

異流形，它們的邊界以一種特定的方式等同起來。 我們可以在這個奇異流形上面定義一些

函數空間以及在這些函數空間一種二階橢圓算子。我們可以把經典二階橢圓方程的結果從

光滑流形拓展到奇異流形上，包括解的存在性，唯一性，正則性以及橢圓算子的譜理論等

等。 在此之後，我們就可以把它應用到一些地方，比如說我們可以研究極小三連接超曲面

的Morse指數與三連接曲面上的共形結構。

我們這些新的偏微分方程理論對於研究浸入的極小三連接超曲面是非常重要的。

在[Wan22]中，我們已經觀察到在三連接超曲面上有這些函數空間。這個就是我們要在更一

般意義下研究總結這些函數空間的一個動機。另外，在[Wan21a, Wan21b]中，我們也注意到

我們也極需要有一套關於橢圓方程解的正則性的結果。這也是我們要建立一個在三連接超曲

面上關於橢圓方程理論的一個動機。

一旦我們有了正則化的結果，那麼幾乎所有偏微分方程的工具可以應用到三連接超曲面

上了。特別的，我們也希望這些結果可以進一步拓展到一些幾何情形。比如說我們可以考慮

在三連接超曲面上面定義熱方程類型的方程。我們也可以考慮其他一些正則性更差的超曲

面。
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Chapter 1

Introduction

Minimal surfaces are important objects in mathematics due to their natural phenomenon

arising from certain area minimizing property. In this thesis, I will focus on the singular

version of minimal surfaces, namely the minimal triple junction surfaces.

The research on minimal surfaces went back to J.L. Lagrange, who wanted to find

a surface with the least area with a prescribed boundary. In general, we may obtain a

singular minimal surface with a given boundary after minimizing. This phenomenon

was observed by J. Plateau, who experimented with soap films, and he formulated the

well-known Plateau’s laws to describe their structures.

Since the triple junction structure naturally arises from the Plateau’s laws, there are

quite a lot of results related to triple junction surfaces. J. Taylor [Tay73, Tay76] has studied

specific minimizing problems and found two types of singularities would appear. One is

the Y-type singularity related to the triple junction surfaces. Furthermore, the work of G.

Lawlor and F. Morgan [LM96] has shown that triple junction surfaces are always locally area

minimizing in arbitrary dimension and codimension. From the point of view of mappings

(i.e., [Dou31]), C. Mese and S. Yamada [MY06] tried to minimize the Dirichlet energy to get

the Y-type singularities. Recently, J. Bernstein and F. Maggi [BM21] showed the rigidity of

the Y-shaped catenoid, a natural extension of the result in [Sch83].

The regularity of stationary integral varifolds is still a central problem in geometric
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measure theory. L. Simon [Sim93] showed if a stationary integral varifold is very close to

the union of three half-planes, which is stationary in Rn, then locally, this varifold is indeed

a C1,µ triple junction minimal submanifold. B. Krummel [Kru13] improved the regularity

from C1,µ to C∞ near their junctions.

Just like the classical mean curvature flows, we can also consider moving the triple

junction surfaces by their mean curvatures. Recently, there have been some interesting

progress in this area, e.g., [Fre10, DG13, DGK14, SW20].

Hence, the topics about triple junction surfaces are pretty interesting and attractive to

many researchers. In this thesis, I will introduce the notions of intrinsic triple junction

hypersurfaces. We will focus on the triple junction hypersurfaces that can arise from the

embedded triple junction hypersurfaces in an ambient Riemannian manifold.

1.1 Summary of main results

In this section, I will briefly summarize the main results and explain why we want to study

the intrinsic triple junction hypersurfaces and the elliptic operators on them.

1.1.1 Curvature estimate and generalized Bernstein theorem for stable triple

junction surfaces

The first thing I have investigated is the curvature estimate for stable triple junction surfaces.

Usually, the curvature estimate plays a key role in the theory of minimal surfaces, especially

in the min-max theory (e.g., [Smi83, CdL03, DLT13, LR18, LZ21, LZZ21]).

Besides, the curvature estimate for stable hypersurfaces itself is an interesting topic. Note

that curvature estimate for stable minimal hypersurfaces is equivalent to the generalized

Bernstein theorem for a stable minimal hypersurface in Rn+1.

The classical and powerful results are due to Schoen, Simon, Yau [SSY75]. Their methods

are also used in another type of curvature estimate. For instance, the work [LZZ21] used this

trick to show that a particular curvature estimate holds for minimal capillary hypersurfaces.
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After that, Schoen and Simon [SS81] developed a deep theory about the regularity

and compactness theory for stable minimal hypersurfaces. This will provide us with an

optimal dimension estimate of the singular set, the validity of curvature estimate, and the

generalized Bernstein theorem hold. Note that all of the previous results require volume

growth conditions.

If we only focus on the surface case, there are other ways to prove the curvature estimate

and generalized Bernstein theorem without the area growth condition. Interested readers

may refer to the work of [dCP12, Pog81, FCS80].

In particular, the recent work of Chodosh and Li [CL21] shows we can get the curvature

estimate for stable minimal hypersurfaces in R4 without the volume growth condition.

In [Wan22], we can use the trick due to Schoen, Simon, and Yau to show that if a triple

junction surface Σ is stable with quadratic area growth condition, and the triple junction is

compact, then we can show Σ is indeed flat. Since there are a lot of notations we need to

define, we put the precise statement in Subsection 6.1.2.

Note that there are several particularly interesting function spaces during the study of

stability inequality in this work. For example, suppose Σ = (Σ1, Σ2, Σ3) is a triple junction

hypersurface. The function f = ( f 1, f 2, f 3) in this space will have sum of f i restricted on

boundary vanishes. Hence, it is worth giving more precise definitions of these function

spaces and studying the elliptic operators defined on these spaces. Note that we also need

to develop the regularity theory to give more precise definitions and properties of the Morse

index of minimal triple junction hypersurfaces.

This is one motivation why we need to develop a theory about elliptic partial differential

equations on triple junction hypersurfaces.

1.1.2 Computing the index of stationary networks in S2

Before moving to the Morse index of triple junction hypersurfaces, we can first investigate

the Morse index of networks. This is because the regularity becomes trivial for networks.

By the way, the models of geodesic and stationary networks can be viewed as the
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simpler version of minimal surfaces and stationary varifolds. There are still many active

researches focusing on this direction. In particular, the first step towards solving the double

bubble conjecture is the planar double bubble conjecture, which was solved by a group of

undergraduate students [FGB+93], and later on, the stable case was solved by [MW02]. There

are also many researches about planar clusters (e.g., [CHH+94, MFG98, HM05, Wic04]). In

particular, in the work of [MY06], the authors also considered the 1-dimensional case first.

In [Wan21a], we will define the stability operators based on the second variation formula

and define the Morse index of these networks. Since these definitions require much space,

we will illustrate only one of the main results in this paper as follows.

Theorem 1.1. The Morse index of all closed stationary triple junction networks in S2 is F− 1 where

the F is the number of regions on S2 cut out by this network. The corresponding eigenfunctions are

all locally constant functions.

Since the stability operator is different from the Laplacian on networks in a sphere

only up to a constant, we may confirm one of Yau’s open problems [Yau82] in the case of

triple junction networks. Precisely, our result shows that the first non-trivial eigenvalue for

Laplacian on triple junction networks on S2 is 1.

The method we used in the proof of Theorem 1.1 is to divide a big network into several

smaller networks, and we construct a Dirichlet-to-Neumann map with respect to this

subdivision. Then we can compute the Morse index of the whole network using the Morse

index and nullity of smaller networks and the index of the Dirichlet-to-Neumann map. This

will significantly reduce the computational time since the original networks might be very

complicated.

Moreover, this method can also be easily generalized to higher dimensions and help

us to compute the Morse index of triple junction hypersurfaces. We will go back to the

Dirichlet-to-Neumann map on triple junction hypersurfaces in Section 6.2 after we have

developed the regularity theory.
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1.1.3 Conformal structures on triple junction surfaces

In the classical theory of minimal surfaces, the conformal structures on minimal surfaces

are pretty helpful. In particular, observing the Gauss map of a minimal surface immersed in

R3 is a conformal map, we can determine the conformal structures for a complete minimal

surface in R3 with finite total curvature [Oss86]. There is a survey [MP04] that investigates

the conformal properties of minimal surfaces.

Hence, it is worth studying the conformal structure on triple junction surfaces. We will

focus on this topic in Chapter 7. In general, we can only develop such a theory after solving

the regularity problem. However, the weak uniformization does not require the regularity

result in one particular case. In [Wan21b], we develop a weak uniformization for some

specific triple junction surfaces. As it needs some notations to precisely state this theorem, I

will put the details in Section 7.4.

The tools used in the paper [Wan21b] is the uniformization of surfaces with boundaries.

Indeed, we extend Rupflin’s work [Rup21] to ensure it can be applied to triple junction

surfaces in this particular case.

Besides, the uniformization of surfaces with boundaries itself is an interesting problem.

There are a lot of related works like [OPS88, OPS89, Khu91, Kim08]. Moreover, Brendle

[Bre02a, Bre02b] has considered a family of curvature flow of metrics and found that the

limit metrics have constant Gaussian curvature and constant geodesic curvature on the

boundary. This provides us with another way to think about uniformization.

1.2 Outline of this thesis

In this section, we will describe the organization of this thesis.

In Chapter 2, we will fix notations and introduce the concepts of triple junction hypersur-

faces using triple junction structures. We will also give some standard examples to illustrate

the triple junction hypersurfaces.

In Chapter 3, we define the function spaces, vector fields, differential forms, and metrics
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on triple junction hypersurfaces. These definitions are all required to be compatible with

the triple junction structure. In particular, these spaces share some common properties with

the usual spaces that appear on smooth hypersurfaces. We will use several examples to

illustrate what these spaces will look like and demonstrate they are the spaces we want if

the triple junction hypersurfaces are embedded in a larger smooth Riemannian manifold.

In Chapter 4, we define the Sobolev-type spaces and second-order elliptic operators

on triple junction hypersurfaces. In particular, the stability operator used in [Wan22] will

automatically be one of such operators.

From now, we have all the concepts to define elliptic partial differential equations on

triple junction hypersurfaces. This is done in Chapter 5. In this chapter, we will define the

weak solutions to the elliptic equations and establish the regularity of such solutions. In

particular, we will mainly focus on the regularity near triple junctions. After establishing

the regularity results, it is standard to develop the spectrum theory for second-order elliptic

operators.

In Chapter 6, we will describe a method of computing the index and nullity for triple

junction hypersurfaces. As we have mentioned before, this is an extension of my previous

work [Wan21a]. We will find that the index for the second-order elliptic operators can also

be computed through the information on each hypersurface and Dirichlet-to-Neumann map.

At last, we will give an example of its application.

The last chapter will study the conformal structure on triple junction surfaces. We will

show that we can always find a metric with constant Gaussian curvature on triple junction

surfaces when χ(Σ) ≤ 0. We also introduce weak uniformization and use an example to

illustrate why we consider weak uniformization. At last, we mention the relation between

extremal metrics for first non-trivial eigenvalues and conformal structures.
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Chapter 2

Basic notations and definitions

2.1 Notations

Let us fix an integer n ≥ 2 as the dimension of hypersurfaces. We adapt the following

notations.

• Rn
+ := {x = (x1, · · · , xn) ∈ Rn : x1 ≥ 0}.

• Γ(E), the collection of smooth sections for vector bundle E → Σ or a rough section

define a.e. on Σ depending on the context. Usually, if E is a subbundle of TΣ, we will

use Γ(E) to denote the set of smooth sections. If we view E as a vector-valued function,

we do not expect the section to be smooth all the time. It may only be defined almost

everywhere with respect to the measure on Σ. (See Section 4.1 about Sobolev spaces

on triple junction hypersurfaces for details.)

• We will use Einstein summation if needed.

• 〈X, Y〉g denotes the inner product of X, Y under metric g. We omit g if the metric

is clear from the context. Sometimes, we use the alternative notation g(X, Y) to

emphasize that g may be changing. If X, Y are vector fields on Rn with standard

Euclidean metric, we use X ·Y to denote their inner product.

7



• ∇Σ,∇g denote the covariant derivative on Σ with respect to the metric g. Sometimes

we will omit Σ or g if it is clear from the context.

• RicN denotes the Ricci curvature on N. We will write RicN(X) := RicN(X, X). Here,

N is a Riemannian manifold.

• divΣX := ∑n
i=1 〈∇ei X, ei〉 is defined as the divergence of a vector field, where {ei} is

the orthonormal basis of a tangent plane. Note that we can also define the divergence

for a tensor T as (divΣT)I := TIk,k for multi-index I.

• ∆Σ f := divΣ∇Σ f denotes the Laplacian operators acting on a function f .

Suppose Σ is smoothly immersed into an (n + 1)-dimensional Riemannian manifold

(N, gN), then we will use the following notations related to submanifolds.

• ν is the unit normal vector field on Σ when we immerse Σ into an (n + 1)-dimensional

Riemannian manifold.

• AΣ(X, Y) :=
〈
∇gN

X Y, ν
〉

denotes the second fundamental form of Σ.

• HΣ := ∑n
i=1 AΣ(ei, ei) denotes the mean curvature of Σ, where we choose {ei} as the

orthonormal basis at a tangent plane. We will write HΣ := ∑n
i=1∇

gN
ei ei as the mean

curvature vector of Σ. Note that HΣ can be defined in any codimension.

In the later definitions, we will use a tuple to denote the ordered set of functions, vector

fields, differential forms, metrics, etc., on triple junction hypersurfaces. When we talk about

the actions between these tuples, we always mean we will separate them and do those

actions on each hypersurface and combine their results to get another tuple.

For example, if f = ( f 1, f 2, f 3) and g = (g1, g2, g3), we will write f g := ( f 1g1, f 2g2, f 3g3).

Similarly for any other kinds of actions like if X = (X1, X2, X3) is a tuple of vector fields,

then ∂
∂X f =

(
∂

∂X1 f 1, ∂
∂X2 f 2, ∂

∂X3 f 3
)

.
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2.2 C(0) triple junction hypersurfaces

For each i = 1, 2, 3, we write Σi as an n-dimensional smooth manifold with smooth boundary

∂Σi. In this thesis, we will assume each Σi is always connected and orientable. In general,

∂Σi may have more than one component. We will write ∂Σi = Γi t Γ̊i as the disjoint union

of the components of ∂Σi. We want to identify their interior boundary Γ̊i to get a triple

junction manifold. We call it triple junction hypersurfaces since we will only focus on the

triple junction manifolds that can be immersed into a larger ambient manifold.

We write Γ as an (n− 1)-dimensional smooth manifold without boundary.

Definition 2.1. We say Σ = (Σ1, Σ2, Σ3) is a C(0) (intrinsic) triple junction hypersurface, if there

exists an (n− 1)-dimensional manifold Γ and three diffeomorphisms ϕi : Γ→ Γ̊i, i = 1, 2, 3.

We will call Γ as the triple junction of Σ and we will write ∂Σ =
⋃3

i=1 Γi.

Under this definition, we can write Γ = Γ̊i for i = 1, 2, 3. We call these conditions (i.e., the

diffeomorphism ϕi) as the C(0) triple junction structure on Σ. Note that Σ will automatically

have the quotient topology. For example, for any p ∈ Γ, if we say U is a neighborhood of p,

we actually means U = (U1, U2, U3) such that Ui is a neighborhood of p ∈ Γ̊i in Σi.

Note that we may allow Γi or Γ̊i to be an empty set. If Γ̊i = ∅, then Σ will be the

union of three independent manifolds. In this thesis, we will only focus on the case Γ 6= ∅,

although almost all results will trivially hold for the case Γ = ∅. On the other hand, if

Γ1 = Γ2 = Γ3 = ∅, we will write ∂Σ = ∅.

Remark 2.2. ∂Σ does not play any roles in the definitions of triple junction hypersurfaces. So it is

harmless to temporarily assume ∂Σ = ∅. We need it nonempty if we want to solve a PDE problem

on Σ. In that case, we need Σ to be compact and hence we also need to consider the case ∂Σ 6= ∅ in

order to impose some boundary conditions.

Remark 2.3. In general, if some of Σi has more than one component, we can define the triple junction

hypersurface as above. Sometimes Σ can become connected under the quotient topology. Almost all

the results in this thesis are valid for this case. See Subsection 7.3 for an example.
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Definition 2.4. We say Σ is a C0 extrinsic (non-degenerate) triple junction hypersurface if

there exists an (n + 1)-dimensional manifold N and three smooth immersions φi : Σi → N

such that the following holds,

• φi restricts on Γ̊i is a diffeomorphism to an immersed (n− 1)-dimensional submanifold

Γ of N for different i.

• For each p ∈ Γ, TpΣi 6= TpΣj for every 1 ≤ i 6= j ≤ 3.

It is easy to note if Σ is a C0 extrinsic triple junction hypersurface, then it will automati-

cally be an intrinsic one. The non-degenerate condition (the second condition in Definition

2.4) makes sure that Σi intersects Σj along Γ transversally for different i, j. In this thesis, we

will always assume Σ is intrinsic unless otherwise stated.

Definition 2.5. We say a triple junction hypersurface Σ has density θ, if θ can be written as

θ = (θ1, θ2, θ3) and each θi is a positive constant function on Σi.

In this thesis, we will always assume Σ has density θ. Indeed, it is applicable only when

we immerse it into a larger ambient manifold N and try to compute its area. The density

will determine how we can define the function spaces and several other spaces.

2.3 Triple junction structure

Now let us define the triple junction structure on Σ to make it into a triple junction

hypersurface.

Before giving the precise definitions, let us recall some concepts of distributions and

foliations on manifolds.

Suppose M is an n-dimensional smooth manifold. Let τ be a vector field on M and D

be an (n− 1)-dimensional smooth tangent distribution on M. We suppose τ /∈ D. Recall we

say D is a distribution if it is a subbundle of tangent bundle TΣ.

Definition 2.6. We say (τ, D) is integrable if D is involutive and for any V ∈ Γ(D), we have

[τ, V] ∈ Γ(D).

10



Recall that we say D is involutive if for any V, W ∈ Γ(D), we have [V, W] ∈ Γ(D).

Standard proof for the Frobenius Theorem implies we can describe the structure of (τ, D)

using local coordinate charts.

Proposition 2.7. Suppose (τ, D) is integrable on M, then for any p ∈ M, we can find a coordinate

chart (x1, · · · , xn) near p such that

• τ = ∂
∂x1

near p,

• D is spanned by ∂
∂x2

, · · · , ∂
∂xn

near p.

From Proposition 2.7, we know (τ, D) will determine a foliation {x1 = s} near p and Dq

will become the tangent space of some leaves for each q near p.

Now let us go back to the C0 triple junction hypersurface Σ.

Definition 2.8. Let τi be a smooth vector field near Γ on Σi and Di an (n− 1)-dimensional

smooth tangent distribution near Γ on Σi. We suppose each τi is pointing outside of Γ and

Di = TΓ when restricted on Γ. Then we write (τ, D) = ((τ1, τ2, τ3), (D1, D2, D3)) and call it

as the triple junction structure on Σ if each (τi, Di) is integrable on Σi for i = 1, 2, 3.

We say Σ is a triple junction hypersurface if we assume Σ is a C(0) triple junction hypersur-

face together with a triple junction structure (τ, D).

Remark 2.9. Note that we only require τ and D to be defined near Γ. This is because, by Proposition

2.7, the existence of D is equivalent to the existence of the foliation of Γ. Usually, we do not expect

the foliation can cover the whole hypersurface.

Remark 2.10. (τ, D) can be understood as the C(1) triple structure condition on Σ if we want

to compare the previous C(0) triple junction structure. Hence, we say (τ, D) is a triple junction

structure on Σ, we already assume we have fixed C(0) triple junction structure on Σ.

Note that by Proposition 2.7, we can find a good coordinate chart near each p ∈ Γ.

Proposition 2.11. For each p ∈ Γ, we can find a local coordinate chart ϕ : U → V (i.e.,

ϕi : Ui → Vi ⊂ Rn
+ for i = 1, 2, 3) near p such that

11



• ϕ(Γ ∩U) = {x1 = 0} ∩V.

• ϕi(p) = 0 and ϕi(q) = ϕj(q), ∀q ∈ Γ if we identify Vi, V j as a subset of Rn
+.

• τ = − ∂
∂x1

near p.

• D is spanned by ∂
∂x2

, · · · , ∂
∂xn

near p.

Here, we use the notation ϕ : U → V to mean ϕi : Ui → Vi where Ui is the neighborhood

of p in Σi and Vi is the neighborhood of 0 in Rn
+. Similar rules apply for other notations,

e.g., τ = − ∂
∂x1

actually means τi = −(ϕi)−1
∗

(
∂

∂x1

)
.

Proof of Proposition 2.11. The third and fourth results are clear by Proposition 2.7. For the first

one, we note the integral manifold for Di through p is Γ on Σi. On the other hand, the integral

manifold for the distribution spanned by
{

∂
∂x2

, · · · , ∂
∂xn

}
in Rn is the hyperplane defined by

{x1 = c}. Hence, we know the coordinate chart defined by Proposition 2.7 will map Γ to the

subset of {x1 = c} for c ∈ R. We can choose c = 0 and get ϕ(Γ ∩U) = {x1 = 0} ∩V. For

the second one, we only need to reparametric the coordinate along Γ to ensure the image of

Γ under ϕi can be matched.

Remark 2.12. Although we use (τ, D) to define the triple junction structure, we will find we can

only use τ to define the triple junction structure. This can be seen by the following steps.

Given τ = (τ1, τ2, τ3) defined in Definition 2.8, we can consider the smooth flow θi
t : Σi → Σi

generated by τi (We might extend Σi a bit to make it into a manifold without boundary) near Γ. Then

we may define Di
q := Tq(θi

tq#Γ) for q such that there is a tq with q ∈ θi
tq#Γ. Roughly speaking, we

can construct a local foliation of Γ using the flow generated by τ, then the distribution will be taken

as the tangent space of this foliation. Note that such D is uniquely determined by τ.

Moreover, we will find we can only choose τ defined on Γ to define the triple junction structure.

See Section 3.3 for details.

We will keep D in our definitions since we need to use it a lot later on.
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2.4 Some examples

Here are some examples of triple junction surfaces (2-dimensional triple junction hypersur-

faces).

Σ1

Σ2

Σ3

Γ1

Γ2

Γ

Y-catenoid Embedded in R3

Σ1, Σ2

Σ3

Γ̊3Γ̊1, Γ̊2

Γ1, Γ2

An intrinsic triple junction hypersurface

τ1, τ2 τ3

Figure 2.1: Y-shaped catenoid

The first one is the Y-shaped catenoid. As shown in Figure 2.1, the blue curves are the

component of ∂Σ, and the red curves are the interior boundary of Σi. We will choose τi as

the unit outer normal of Γ in Σi and let such τ be the triple junction structure on Σ (see

Remark 2.12).

(a) Double Bubble (credit to https://faculty.math.
illinois.edu/~jms/Images/)

Γ

Γ1

Γ2

Γ3

Σ3

Σ2

Σ1

(b) Triple Junction Surfaces with Corners

Figure 2.2: Some more examples
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Double bubble is another example we might be familiar with since it can be observed in

soap bubbles, as shown in Figure 2.2a. In this example, we find each Σi is a disk, and the

C(0) triple junction structure is just some diffeomorphisms along their boundaries.

There are also many irregular triple junction surfaces. For instance, we can consider

the triple junction surface with corners as shown in Figure 2.2b. We suppose each Σi is a

rectangle region (identical to each other) in R2. Then we can identify one of their boundaries.

In this thesis, I will not consider this case. This is because we need plenty of additional

technical definitions and statements to make it well-defined, especially when studying the

regularity of solutions.

On the other hand, there are also a lot of 1-dimensional triple junction hypersurfaces,

known as networks. In [Wan21a], I have described their structure carefully and given the

ideas of how to solve a PDE on the networks.
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Chapter 3

Geometric spaces on triple junction

hypersurfaces

3.1 Function Spaces on Σ

We fix a triple junction structure (τ, D) on Σ.

Definition 3.1. We say f = ( f 1, f 2, f 3) is a smooth function on Σ, and write f ∈ C∞(Σ), if for

each i = 1, 2, 3, f i : Σi → R is a smooth function on Σi (smooth up to the boundary).

Roughly speaking, C∞ function space has no connection with any triple junction structure

on Σ. Now let us define some function spaces related to the C(0) structure on Σ. Note that

for any f ∈ C∞(Σ), we know the restriction of f on Γ can be understood as the smooth map

from Γ to R3. In other words,

f |Γ = ( f 1|Γ, f 2|Γ, f 3|Γ) ∈ C∞(Γ, R3).

Note that we can also view C∞(Γ, R3) as a set of all the smooth sections of the trivial

vector bundle Γ×R3.

Let E ⊂ Γ×R3 be a smooth rank k subbundle of Γ×R3 for some k ∈ {0, 1, 2, 3}. We

write Γ(E) as the set of all possible sections of E. We do not require the sections in Γ(E)

to be smooth. In the later definitions about Sobolev spaces, we only require it is defined
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almost everywhere in Γ(E) with respect to the canonical measure on Γ.

We define the C(0)
E (Σ) related to E as follows.

Definition 3.2. We say f ∈ C(0)
E (Σ) if f ∈ C∞(Σ) and in addition, f |Γ is a smooth section of

E.

Note that since f |Γ is smooth for any f ∈ C∞(Σ), we can only require f |Γ ∈ Γ(E) instead

of requiring f |Γ to be a smooth section in Definition 3.2.

One special case is that we can choose E =
{
(p, (g1, g2, g3)) ∈ Γ×R3 : g1 = g2 = g3}. If

f ∈ C(0)
E (Σ), then we actually mean f i will become the same function when restricted on Γ.

One can understand C(0)
E (Σ) as some kind of continuous function spaces on Σ across the

junction.

Let us choose another E′ ⊂ Γ × R3, a smooth l-dimensional subbundle with l ∈

{0, 1, 2, 3}. We define the new subspace of C∞(Σ) related to E, E′ as follows.

Definition 3.3. We say f ∈ C(1)
E,E′(Σ) if f ∈ C(0)

E (Σ) and in addition, ∂ f
∂τ |Γ is a smooth section

of E′.

Here, we write ∂ f
∂τ =

(
∂ f 1

∂τ1 , ∂ f 2

∂τ2 , ∂ f 3

∂τ3

)
.

Remark 3.4. Note that f ∈ C(1)
E,E′(Σ) means we impose some conditions on the boundary values of f

and the first derivative values of f on Γ, so we may understand this space as the C1 function space

across the junction.

There are two important subbundles we might need to use a lot. We write them as

E1 :=
{
(p, (g1, g2, g3)) ∈ Γ×R3 : g1 = g2 = g3

}
,

Eθ :=
{
(p, (g1, g2, g3)) ∈ Γ×R3 : θ1g1 + θ2g2 + θ3g3 = 0

}
,

where θ = (θ1, θ2, θ3) is the density function.

If we put a metric on the bundle Γ×R3 using density defined as

g · g′ =
3

∑
i=1

θigi(g′)i, ∀g, g′ ∈ (Γ×R3)p ' R3, p ∈ Γ.
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Then for any smooth subbundle E ⊂ Γ×R3, we can define the orthogonal complement

bundle,

E⊥ :=
{
(p, g) ∈ Γ×R3 : g⊥Ep, ∀p ∈ Γ

}
.

One particular case is Eθ = E⊥1 .

Now, let us give some examples to help us better understand the above function spaces.

3.1.1 Examples

Let N be an (n + 1)-dimensional Riemannian manifold. Suppose φ : Σ → N is a smooth

minimal immersion with density θ = (θ1, θ2, θ3). In other words, we suppose the following

conditions hold,

• Each φi is a minimal immersion from Σi to N and φi|Γ ≡ φj|Γ for 1 ≤ i, j ≤ 3.

• Let τi be the outer conormal of Σi ⊂ N along Γ. Then

3

∑
i=1

θiτi = 0.

We will go back to these equivalence conditions when computing the first and second

variation formulas for triple junction hypersurfaces (see Section 4.4).

Note that we have a canonical way to choose the triple junction structure (τ, D) using

the immersion φi and a metric on N. We will illustrate this structure later on (Subsection

3.4.3). Now let us just assume we have constructed the triple junction structure (τ, D) such

that τi|Γ is the outer unit normal of Γ for Σi ⊂ N.

The first interesting function space on Σ is the restriction of smooth functions h ∈

C∞(N, R) to Σ. In other words, we choose f = ( f 1, f 2, f 3) such that f i = h|Σi . Clearly, we

will find f ∈ C(0)
E1

(Σ). Moreover, we note

3

∑
i=1

θi ∂

∂τi f i ≡ 0,

by the definition of minimal immersion. Then we know ∂
∂τ f |Γ ∈ Γ(Eθ) and therefore,

f ∈ C(1)
E1,Eθ

(Σ).
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Another interesting function space on Σ is the inner product of a smooth vector field

on N with the unit normal vector field along Σ. Let X be a smooth vector field on N. Let

ν = (ν1, ν2, ν3) be the unit normal vector field on Σ, i.e., νi is the unit normal vector field on

Σi, such that ∑3
i=1 θiνi = 0. (In general, we might not able to find a global νi to make this

equality hold, especially where Γ has more than one component. We will find a more precise

description in Subsection 3.1.3.) For such ν on Σ, we can easily find 〈ν, X〉 ∈ C(0)
Eθ

(Σ) where

〈·, ·〉 is the metric on N and 〈ν, X〉 := (
〈
νi, X

〉
)3

i=1. Usually, this function space arises from

the variations of Σ. Hence, such space plays a crucial role in studying stability operators.

Readers may find similar definitions of these spaces in [Wan22, Wan21a].

3.1.2 Extensions of functions on extrinsic triple junction hypersurfaces

From the above examples, we see one motivation for studying these function spaces is that

they come from the restriction of smooth functions in the ambient space.

A natural extension of C(1)
E,E′(Σ) is to define

C(k)
E0,E1,··· ,Ek

(Σ) :=
{

f ∈ C∞(Σ) :
∂j f
∂τ j ∈ Ej, ∀0 ≤ j ≤ k

}
.

for some smooth subbundles E0, · · · , Ek ⊂ Γ×R3. The functions in these spaces can be

viewed as the Ck differential functions across the junction. However, we find these spaces

are not necessary. We will give an example to show for every function f ∈ C(1)
E1,Eθ

(Σ) and Σ

is an extrinsic triple junction hypersurfaces, then f is a restriction of a smooth function in

the ambient manifold.

Let Σ be three rays [0,+∞) with their end point {0} identified . We can identify the Σ

with the set Rx ∪ Ry ∪ Rxy ⊂ R2 where

Σ1 =
{
(x, 0) ∈ R2 : x ≥ 0

}
,

Σ2 =
{
(0, y) ∈ R2 : y ≥ 0

}
,

Σ3 =
{
(x, x) ∈ R2 : x ≤ 0

}
.

Note that
∣∣Σ1
∣∣+ ∣∣Σ2

∣∣+√2
∣∣Σ3
∣∣ is stationary in the sense of varifold.
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Hence if f ∈ C∞(R2), we know f |Σ ∈ C(1)
E1,F(Σ) where F ⊂ Γ×R3 is defined as

F :=
{(

p, (g1, g2, g3)
)
∈ Γ×R3 : g1 + g2 +

√
2g3 = 0

}
.

Now, we will show that the converse is true. For any g ∈ C(1)
E1,F(Σ), we can find a smooth

function f ∈ C∞(R2) such that g = f |Σ.

Note that since gi is smooth up to the boundary, we may write

gi(t) = gi(0) + t(gi)′(0) + t2hi(t)

where hi(t) is defined by

hi(t) =


gi(t)−gi(0)−t(gi)′(0)

t2 , t > 0,

(gi)′′(0)
2 , t = 0.

Note that hi(t) is smooth up to the boundary.

We extend hi(t) to a smooth function on R and define a global function f (x, y) by

f (x, y) = g1(0) + x(g1)′(0) + y(g2)′(0) + x2h1(x) + y2h2(y)

+ xy
(

h3
(

x + y√
2

)
− h1(x)− h2(y)

)
.

We can easily see f (x, y) is a smooth function and moreover, we can verify f is indeed

an extension of g on Σ. For example, we can verify g3(t) = f (− t√
2
,− t√

2
) by noting

f
(
− t√

2
,− t√

2

)
= g3(0)− t√

2

(
(g1)′(0) + (g2)′(0)

)
+ t2h3(t)

= g3(0) + t(g3)′(0) + t2h3(t) = h(t).

In other words, we have shown, for any g ∈ C(1)
E1,F(Σ), we can extend g to a smooth

function f defined on the whole space R2.

This example shows that the first derivative condition is enough for the definitions of

interesting spaces.
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3.1.3 Sign functions related to the orientation

This subsection will define a function space related to the variation of Σ.

Since we have assumed each Σi is orientable, we can choose a differential n-form

ω ∈ Ωn(Σ) such that ωi is a non-vanishing n-form on Σi (hence it will determine an

orientation on Σi) for each i. Note that each ωi will naturally induce an orientation on Γ by

the (n− 1)-form ιτi ωi. In general, for different i, the ωi may induce a different orientation

on Γ. Hence, we want to use a sign function to describe such differences.

Let us fix an orientation form η on Γ (a non-vanishing (n− 1)-form). We define the sign

function sign = (sign1, sign2, sign3) on Γ by

signi(p) =


1, ιτi ω and η have same sign at p,

−1, ιτi ω and η have different signs at p.

Now we define the smooth subbundle Fθ ⊂ Γ×R3 (related to density θ) as

Fθ :=

{
(p, (g1, g2, g3)) ∈ Γ×R3 :

3

∑
i=1

θi(p)signi(p)gi(p) = 0, ∀p ∈ Γ

}
. (3.1)

Note that the vector bundle Fθ does not rely on the choice of the orientation on Γ. It only

relies on the orientation on Σ. Hence, we can define the function space C(0)
Fθ

(Σ) based on Fθ .

Using the sign function, we can define the orientability of Σ.

Definition 3.5. We say a triple junction hypersurface Σ is orientable if we can choose

orientations on each Σi and on Γ such that the sign function is identically 1.

Note that if Σ is orientable, then Fθ = Eθ .

Remark 3.6. If we have a double junction hypersurface instead of the triple junction hypersurface,

then the orientability defined above coincides with the usual orientability on this hypersurface.

For example, suppose M is a smooth manifold, and it can be regarded as a union of two orientable

smooth manifolds M1, M2 with boundary by an identification along their boundaries. Then M is

orientable if and only if we can find orientations on M1, M2, respectively, such that they induce the

same orientation on ∂M1 = ∂M2.
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Note that we use the orientability in Theorem 6.7 only. Hence, this thesis also provides a method

to study geometric properties and the PDE theory on non-orientable hypersurfaces if we change triple

junction hypersurfaces to double junction hypersurfaces.

Now, let us illustrate why C(0)
Fθ

(Σ) is related to the variation.

Fix a Riemannian manifold N equipped with metric gN . We suppose N is orientable and

fix an orientation on N. Let φ : Σ→ N be an extrinsic triple junction hypersurface in N.

Suppose ν is a unit normal vector field on Σ. Recall that ν = (ν1, ν2, ν3) is a unit normal

vector field if and only if each νi is a unit normal vector field on Σi for i = 1, 2, 3. Usually, ν

will induce an orientation on Σ.

We choose τ = (τ1, τ2, τ3) as the unit normal vector field of Γ such that each τi is tangent

to Σi and pointing outside of Σi. As before, we can choose an orientation on Γ. Suppose

{e1, · · · , en−1} is an oriented basis of TpΓ for any p ∈ Γ. Then by the definition of sign, we

know
{

signiτi, e1, · · · , en−1

}
is an oriented basis of Σi at p. Note that the orientation on Σi

is induced by νi, we actually know
{

νi, signiτi, e1, · · · , en−1

}
is an oriented basis of N at p.

Hence, we know the vector fields
{

νi, signiτi
}

determine the same orientation on the

normal bundle of Γ in N for different i and at the same time, each of them forms an

orthonormal basis of E. This means, if ∑3
i=1 θiτi = 0 along Γ, then we know

3

∑
i=1

signiνiθi = 0.

Note that this result implies, if φ : Σ→ N is a minimal immersion with density θ, then

for any smooth vector field X on N, we know the function f defined by f := 〈X, ν〉gN
is in

the class C(0)
Fθ

(Σ). Hence, this function space is closely related to the vector fields on Σ and

it will appear in the first and second variation formulas.

3.2 Vector fields and differential forms

We fix a triple junction hypersurface Σ with triple junction structure (τ, D) and density

θ = (θ1, θ2, θ3).
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3.2.1 Vector fields on triple junction hypersurfaces

Definition 3.7. We say X = (X1, X2, X3) is a smooth vector field on Σ if Xi ∈ Γ(TΣi) is a

smooth vector field on Σi for each i = 1, 2, 3. We use X(Σ) to denote the space of smooth

vector fields on Σ.

We say X ∈ X(Σ) is C(1) continuously tangentially across the boundary Γ with density θ, and

write it as X ∈ Γ(1)
θ (D), if in addition, the following three conditions hold,

• there exists a neighborhood U of Γ, we have Xi
p ∈ Di

p for all p ∈ Ui,

• Xi|Γ ≡ X j|Γ,

• ∑3
i=1 θi[τi, Xi] ≡ 0 along Γ.

One of the properties of the vector field X in Γ(1)
θ (D) is the function space C(1)

E1,Eθ
(Σ) is

invariant under the action of X.

Proposition 3.8. For any X ∈ Γ(1)
θ (D) and f ∈ C(1)

E1,Eθ
(Σ), we have ∂

∂X f ∈ C(1)
E1,Eθ

(Σ).

Proof. Given f ∈ C(1)
E1,Eθ

(Σ), it is clear that ∂
∂X f ∈ C(0)

E1
(Σ).

Moreover, we find
∂

∂τ

(
∂

∂X
f
)
=

∂

∂X

(
∂

∂τ
f
)
+ [τ, X] f ,

and note ∂
∂X

(
∂

∂τ f
)
|Γ ∈ Γ(Eθ) and [τ, X] f |Γ ∈ Γ(Eθ). Hence ∂

∂X f ∈ C(1)
E1,Eθ

(Σ).

Remark 3.9. For any subbundle E′ ⊂ Γ×R3, we can define the vector fields associated with E′ by

the following in view of Proposition 3.8.

We define

Γ(1)
E′ (D) :=

{
X ∈ X(Σ) :

∂ f
∂X
∈ C(1)

E1,E′(Σ), ∀ f ∈ C(1)
E1,E′(Σ)

}
.

Now if we write XE′(Γ) :=
{

X = (X1, X2, X3) ∈ ⊕3
i=1X(Γ) : ∂g

∂X ∈ Γ(E′), ∀g ∈ C∞(Γ)
}

,

then we can find X ∈ Γ(1)
E′ (D) if and only if

Xi|Γ ≡ X j|Γ and [τ, X]|Γ ∈ XE′(Γ).
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3.2.2 Differential forms on triple junction hypersurfaces

Definition 3.10. We say ω = (ω1, ω2, ω3) is a (smooth) differential form of degree k on Σ, and

write it as ω ∈ Ωk(Σ), if each ωi ∈ Ωk(Σi) is a smooth differential form of degree k on Σi.

We say ω ∈ Ωk(Σ) is C(1) continuous across the junction and write it as ω ∈ Ωk
Eθ
(Σ), if in

addition, we have the following conditions hold,

• ω(X1, ..., Xk) ∈ C(1)
E1,Eθ

(Σ) for X1, · · · , Xk ∈ Γ(1)
θ (D).

• ω(τ, X1, ..., Xk−1) ∈ C(0)
Eθ

(Σ) for X1, · · · , Xk−1 ∈ Γ(1)
θ (D).

Recall that we use the notation ω(X1, · · · , Xk) :=
(
ωi(Xi

1, · · · , Xi
k)
)3

i=1.

Clearly, any the function f ∈ C(1)
E1,Eθ

(Σ) will automatically be a zero-form on Σ.

It is also quite interesting that such differential forms have similar properties to the usual

differential forms on smooth manifolds.

Proposition 3.11. We have the following properties for the differential forms Ω∗Eθ
(Σ),

• Ω∗Eθ
(Σ) is closed under the usual differential d on Ω∗(Σ).

• Ω∗Eθ
is closed under ∧ product.

Hence, Proposition 3.11 shows Ω∗Eθ
(Σ) is a well-defined differential graded subalgebra

of Ω∗(Σ).

Proof. The proof is clear if we choose a suitable coordinate system. Let (x1, · · · , xn) be

the coordinate chart near p that appeared in Proposition 2.11. Locally, we can express

ω ∈ Ω∗(Σ) as

ω = a1Idx1 ∧ dxI + aJdxJ

where I, J are multi-indices that do not contain index 1. Here, we use the Einstein sum-

mation so that there is a summation over the multi-indices I, J. Note that D is spanned by{
∂

∂x2
, · · · , ∂

∂xn

}
and τ = − ∂

∂x1
, we can find

a1I ∈ C(0)
Eθ

(Σ) and aJ ∈ C(1)
E1,Eθ

(Σ)

23



if and only if ω ∈ Ω∗Eθ
(Σ).

Hence for ω ∈ Ω∗Eθ
(Σ), we have

dω =
n

∑
j=2

∂a1I

∂xj
dxj ∧ dx1 ∧ dxI +

∂aJ

∂x1
dx1 ∧ dxJ +

n

∑
j=2

∂aJ

∂xj
dxj ∧ dxJ ∈ Ω∗Eθ

(Σ)

by noting ∂a1I
∂xj
|Γ ∈ Γ(Eθ),

∂aJ
∂x1
|Γ ∈ Γ(Eθ) and ∂aJ

∂xj
∈ C(1)

E1,Eθ
(Σ).

So dω ∈ Ω∗Eθ
(Σ).

The second result can be concluded using the following properties of the closeness of

the function space by using the coordinate chart in Proposition 2.11.

Proposition 3.12. The function spaces C(0)
E1

(Σ) and C(1)
E1,E′(Σ) are all closed under the usual

multiplication for any smooth subbundle E′ of Γ×R3.

Moreover, C(0)
E1

(Σ) acts on any C(0)
E (Σ) for any smooth k-dimensional subbundle E ⊂ Γ×R3.

Proof. Indeed, C(0)
E1

(Σ) acts on C(0)
E (Σ) by multiplication comes from the definition of E1. As

a by product, we know C(0)
E1

(Σ) is closed under multiplication.

Now for any f1, f2 ∈ C(1)
E1,E′(Σ), we know(

f1
∂

∂τ
f2

)∣∣∣∣
Γ
∈ Γ(E′),

(
f2

∂

∂τ
f1

)∣∣∣∣
Γ
∈ Γ(E′).

We also have f1 f2 ∈ C(0)
E1

(Σ). Hence f1 f2 ∈ C(1)
E1,E′(Σ).

Remark 3.13. Note that in general, the function space C(0)
E (Σ) might not closed under multiplication

for a general E. This is the reason why we consider C(1)
E1,Eθ

(Σ) and define the differential forms only

related to C(1)
E1,Eθ

(Σ). Indeed, other function spaces will also play a crucial role for other kinds of

elliptic PDEs.

We can also describe the proposition of differential operators in the following sense.

Proposition 3.14. There is a unique operator d : Ωk
Eθ
(Σ) → Ωk+1

Eθ
(Σ) for all k satisfying the

following properties,

• d is linear over R.
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• For any ω ∈ Ωk
Eθ
(Σ) and η ∈ Ωl

Eθ
(Σ), we have

d(ω ∧ η) = dω ∧ η + (−1)kη ∧ dη.

• d ◦ d ≡ 0.

• For any f ∈ C(1)
E1,Eθ

(Σ), d f is given by d f (X) = ∂
∂X f for any X ∈ X(Σ).

Proof. Suppose d̃ is any operator satisfying the above four conditions.

We only need to show d̃ is a local operator. This is because we already know the d

satisfies this proposition on the usual smooth manifolds without boundary. If we know d̃

is a local operator up to the boundary, then d̃ must agree with d up to the boundary and

hence d̃ = d.

Hence, we only need to show if ω1 = ω2 in a neighborhood U0 of p ∈ Γ, then dω1 = dω2

at p. Let us choose a bump function ψ ∈ C(1)
E1,Eθ

(Σ) supported in U and having value 1 near

p. This can be done using the coordinate chart ϕ : U → V in Proposition 2.11. For example,

we can choose a bump function φ : Rn
+ → R such that

φ ≡ 1 in Bε(0) ∩Rn
+, suppφ ⊂ B2ε(0) ∩Rn

+,
∂

∂x1
φ = 0 along {x1 = 0} .

Here, we use Br(x) to denote the closed balls in Euclidean space.

Now we can choose the bump function ψ such that ψi := φ ◦ ϕi for ε sufficiently small

such that suppψ ⊂ U0. From the above construction, we know ψ ∈ C(1)
E1,Eθ

(Σ). Note that ψη

is identically zero with η := ω1 −ω2, hence by the properties of d̃, we know

0 ≡ d̃(ψη) = d̃ψ ∧ η + ψd̃η.

Note that d̃ψp = 0 by the fourth property of d̃ and note ψi(p) = 1, we have d̃ηi = 0 at p.

This shows d̃ω1 and d̃ω2 agrees with each other at p. Hence we have shown d̃ is a local

operator.
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3.3 Equivalence classes of triple junction hypersurfaces

As we have seen in Remark 2.12, we know we can define the function spaces and differential

forms by τ only. In this section, we will see that we only need to ensure τ is defined along

Γ (or just an equivalence class of τ defined along Γ).

Definition 3.15. Fix a triple junction hypersurface Σ, we say two triple junction structures

(τ, D) and (τ̃, D̃) are equivalent to each other, if the function space C(1)
E,E′(Σ) agrees with

C̃(1)
E,E′(Σ) where C̃(1)

E,E′(Σ) is determined by (τ̃, D̃) for any E, E′ ⊂ Γ × R3 being smooth

subbundles over Γ. We will write this equivalence as (τ, D) ∼ (τ̃, D̃).

This definition is quite natural. Usually, if two geometric structures give the same spaces,

like function spaces, we have no reason to distinguish them when we want to solve PDEs.

Recall that in the definition of C(1)
E,E′(Σ), we only need the values of τ along Γ. Hence if

τ = τ̃, we know (τ, D) ∼ (τ̃, D̃). Moreover, for any positive function h ∈ C∞(Γ), we have

(τ, D) ∼ (τ̃, D̃) if τ = hτ̃ along Γ. Conversely, we have

Proposition 3.16. If (τ, D) ∼ (τ̃, D̃), then there is a positive function h ∈ C∞(Γ) such that

τ̃ = hτ.

Proof. This is easy to see by considering the space C(1)
Γ×R3,E′(Σ) where E′ is a non-trivial

subbundle. For any p ∈ Γ, we know τ̃ can be written as τ̃i = hiτi + ηi where ηi ∈ X(Γ), hi ∈

C∞(Γ). Then we may choose a test function f ∈ C(1)
Γ×R3,E′(Σ) such that ∂

∂η f = 0 at p for

any η ∈ Tp(Γ) (i.e., f is constant along Γ). This will imply if (a1, a2, a3) ∈ E′p, then we have

(h1a1, h2a2, h3a3) ∈ E′p by f ∈ C̃(1)
Γ×R3,E′(Σ). We can choose different E′ to get h1 = h2 = h3.

Hence we may suppose τ̃i = hτi + ηi for some h ∈ C∞(Γ) and WLOG, assume h ≡ 1 near p.

Hence, we get
(

∂ f i

∂ηi

)3

i=1
∈ Γ(E′). Suppose η1 6= 0, then we choose E′ = {(p, (0, g2, g3)) ∈

Γ×R3}. For any f ∈ C(1)
Γ×R3,E′(Σ), we can adjust f such that ∂ f 1

∂η1 6= 0 and ∂ f j

∂η j = 0 at p for

j = 2, 3. This is possible since we do not have restriction on f . This will contradict the fact(
∂ f i

∂ηi

)3

i=1
∈ Γ(E′).

Hence, we need to have ηi ≡ 0 for each i.
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It is interesting to note that the differential forms do not depend on the choice of the

equivalence class of (τ, D).

Proposition 3.17. If (τ, D) ∼ (τ̃, D̃), then

Ω∗Eθ
(Σ) = Ω̃∗Eθ

(Σ)

where Ω̃∗Eθ
(Σ) is the space of the differential forms related to (τ̃, D̃).

Proof. Using Proposition 3.16, we suppose τ̃ = hτ for h ∈ C∞(Σ).

Suppose ω ∈ Ωk
Eθ
(Σ). Let X1, · · · , Xk ∈ Γ̃(1)

θ (D) and let Y1, · · · , Yk ∈ Γ(1)
θ (Σ) such that

Yj = Xj for j = 1, · · · , k. It is easy to note

ω(τ̃, X1, · · · , Xk−1) ∈ C(0)
Eθ

(Σ), ω(X1, · · · , Xk) ∈ C(0)
E1

(Σ).

So we only need to show

∂

∂τ̃
ω(X1, · · · , Xk)|Γ ∈ Γ(Eθ).

Note that by the properties of Lie derivative, we have

Lτ̃ω(X1, · · · , Xk) =
∂

∂τ̃
ω(X1, · · · , Xk)−

k

∑
j=1

ω(· · · , [τ̃, Xj], · · · ), (3.2)

where ω(· · · , [τ̃, Xj], · · · ) means ω(X1, · · · , Xj−1, [τ̃, Xj], Xj+1, · · · , Xk) and Lτ̃ = (Li
τ̃i)

3
i=1

with Li the Lie derivative on Σi.

Since Lτ̃ω is a tensor, we have

Lτ̃ω(X1, · · · , Xk)|Γ = Lτ̃ω(Y1, · · · , Yk)|Γ

= h
∂

∂τ
ω(Y1, · · · , Yk)|Γ −

k

∑
j=1

ω(· · · , [hτ, Yj], · · · )|Γ

= h
∂

∂τ
ω(Y1, · · · , Yk)|Γ − h

k

∑
j=1

ω(· · · , [τ, Yj], · · · )|Γ +
k

∑
j=1

∂h
∂Yj

ω(· · · , τ, · · · )|Γ (3.3)

where we have used ∂h
∂Yj

ω(· · · , τ, · · · ) := ∂h
∂Yj

ω(Y1, · · · , Yj−1, τ, Yj+1, · · · , Yk).
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Recall that ∑3
i=1 θi[τ̃i, Xi

j] ≡ ∑3
i=1 θi[τi, Yi

j ] ≡ 0, we get

k

∑
j=1

ω(· · · , [τ, Yj], · · · ),
k

∑
j=1

ω(· · · , [τ̃, Xj], · · · ) ∈ C(0)
Eθ

(Σ). (3.4)

At last, we know h ∂
∂τ ω(Y1, · · · , Yk), ∂h

∂Yj
ω(· · · , τ, · · · ) ∈ C(0)

Eθ
(Σ). Combining the identities

(3.2), (3.3), and the result (3.4), we have ∂
∂τ̃ ω(X1, · · · , Xk)|Γ ∈ Γ(Eθ).

From now on, we will call τ as a triple junction structure on Σ even if τ is only defined

along Γ. In this case, we will extend τ arbitrarily near Γ and choose D based on τ if

necessary.

If we only consider the space C(1)
E1,Eθ

(Σ) when fixing the density θ on Σ, we have another

type of equivalent defined as follows.

Definition 3.18. We say two triple junction structures (τ, D) and (τ̃, D̃) are θ-equivalent

to each other, if the function space C(1)
E1,Eθ

(Σ) agrees with C̃(1)
E1,Eθ

(Σ). We will write this

equivalence as (τ, D) ∼θ (τ̃, D̃).

We can give another description of the θ-equivalence relation.

Proposition 3.19. (τ, D) ∼θ (τ̃, D̃) if and only if there exists a positive smooth function h ∈ C∞(Γ)

and some vector field X ∈ Xθ(Γ) such that τ̃ = hτ + X. Here, Xθ(Γ) is defined as,

Xθ(Γ) :=

{
X = (X1, X2, X3) : Xi ∈ X(Γ) and

3

∑
i=1

θiXi ≡ 0

}
.

Proof. The "only if" part is easy to see after a simple verification.

For the "if" part, as shown in Proposition 3.16, we know τ̃i = hτ + ηi for some h ∈ C∞(Γ)

and ηi ∈ X(Γ). Hence, the condition f ∈ C(1)
E1,Eθ

(Σ) implies ∑3
i=1 θid f i(ηi) ≡ 0 on Γ, or we

can write ∑3
i=1 dg(θiηi) ≡ 0 if we define g = f |Γ. Note that for any g ∈ C∞(Σ), we may

extend it to a function f ∈ C(1)
E1,Eθ

(Σ) with g = f |Γ on Γ. So the identity ∑3
i=1 dg(θiηi) ≡ 0 for

any g. Hence ∑3
i=1 θiηi ≡ 0.

Moreover, we have a slightly stronger result than Proposition 3.17.
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Proposition 3.20. If (τ, D) ∼θ (τ̃, D̃), then

Ω∗Eθ
(Σ) = Ω̃∗Eθ

(Σ).

Proof. In view of the result Proposition 3.17, we only need to consider the case τ̃ = τ + X

for some X ∈ Xθ(Γ).

The proof for this case is similar to the proof of Proposition 3.17. The key here is to show

∂

∂τ̃
ω(X1, · · · , Xk)|Γ ∈ Γ(Eθ),

and we can make use of Lie derivatives to finish the proof.

3.4 Metrics on triple junction hypersurfaces

We say g ∈ Sym2T∗Σ is a metric on Σ and write it as g ∈ Met(Σ) if g = (g1, g2, g3) such that

each gi is a metric on Σi for each i = 1, 2, 3.

3.4.1 Canonical metrics and C(1) metrics

Given (τ, D), the triple junction structure on Σ, we can define a canonical metric as follows.

Definition 3.21. We say g ∈ Met(Σ) is a canonical metric on Σ if the following holds,

• g = (g1, g2, g3) such that g1|Γ = g2|Γ = g3|Γ on Γ,

• g(τ, τ) ≡ 1,

• g(τ, X) ≡ 0 for any X ∈ Γ(D),

• g(X, Y) ∈ C(1)
E1,Eθ

(Σ) for any X, Y ∈ Γ(1)
θ (D).

Note that the canonical metric will depend on D and it is not unique. Recall that if we

use the coordinate chart in Proposition 2.11, we know the canonical metric g has the form
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g = dx2
1 + gx1 where gt is the metric on {x1 = t}. This expression shows that the canonical

metric has some relations with the Fermi coordinate. We will use this fact later on.

Let us define a C(1) metric on Σ, which only relies on the equivalence class of triple

junction structures.

Definition 3.22. We say a metric g ∈ Met(Σ) is a C(1) metric on Σ, and write it as g ∈

Met(1)(Σ) if g satisfies the following conditions,

• g = (g1, g2, g3) such that g1|Γ = g2|Γ = g3|Γ on Γ,

• g(τ⊥, τ⊥) ∈ C(0)
E1

(Σ),

• g(τ, X) ∈ C(0)
Eθ

(Σ), ∀X ∈ X(Σ) along Γ,

• g(X, Y) ∈ C(1)
E1,Eθ

(Σ), ∀X, Y ∈ Γ(1)
θ (D).

Here, τ⊥ means the projection of τ to the normal of D under metric g.

By the way, we write g ∈ Met(0)(Σ) if we only have gi|Γ ≡ gj|Γ on Γ.

Remark 3.23. We note each canonical metric g ∈ Met(1)(Σ).

We may prove the following proposition.

Proposition 3.24. The definition of C(1) metric does not rely on the choice of elements in the

equivalence class of relation ∼θ .

Proof. Suppose (τ, D) ∼θ (τ̃, D̃) and g ∈ Met(1)(Σ). Then we want to show g ∈ M̃et(1)(Σ)

where the M̃et(1)(Σ) is the space of C(1) metric related to (τ̃, D̃).

From Proposition 3.19, we know τ̃ = hτ + η for some positive h ∈ C∞(Γ) and η ∈ Xθ(Γ).

Suppose X̃, Ỹ ∈ Γ̃(1)
θ (D) and X, Y ∈ Γ(1)

θ (D) such that X|Γ = X̃|Γ, Y|Γ = Ỹ|Γ.

It is easy to verify the following things,

g(τ̃⊥, τ̃⊥)|Γ = h2g(τ⊥, τ⊥)|Γ ∈ Γ(E1),

g(τ̃, X̃)|Γ = hg(τ, X)|Γ + g(η, X)|Γ ∈ Γ(Eθ),

g(X̃, Ỹ)|Γ = g(X, Y)|Γ ∈ Γ(E1).
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Hence, we only need to show,

∂

∂τ̃
g(X̃, Ỹ)|Γ ∈ Γ(Eθ).

This can be done by using the properties of Lie derivatives. Note that along Γ, we have

∂

∂τ̃
g(X̃, Ỹ)− g([τ̃, X̃], Ỹ)− g(X̃, [τ̃, Ỹ])

= Lτ̃g(X̃, Ỹ) = Lτ̃g(X, Y)

= h
∂

∂τ
g(X, Y) +

∂

∂η
g(X, Y)− g([τ̃, X], Y)− g(X, [τ̃, Y])

= h
∂

∂τ
g(X, Y) +

∂

∂η
g(X, Y)− g([τ, X], Y)− g(X, [τ, Y]) +

∂h
∂X

g(τ, Y) +
∂h
∂Y

g(X, τ)

− g([η, X], Y)− g(X, [η, Y]) (3.5)

Note that all the terms in the last part of identity (3.5) is in C(0)
Eθ

(Σ) by the definition of g,

the properties of η, X and Y.

So we get ∂
∂τ̃ g(X̃, Ỹ)|Γ ∈ Γ(Eθ) by showing g([τ̃, X̃], Ỹ), g(X̃, [τ̃, Ỹ]) ∈ C(0)

Eθ
(Σ).

Although our C(1) metric only relies on the equivalence classes, we can always choose a

triple junction structure in its equivalence class to turn the metric into the canonical metric.

This property can be viewed as the inverse property of Remark 3.23.

Proposition 3.25. Suppose g ∈ Met(1)(Σ), then we can find (τ̃, D̃) ∼θ (τ, D) such that g is a

canonical metric under the triple junction structure (τ̃, D̃).

Proof. For any p ∈ Γ, we fix a local coordinate chart ϕΓ : UΓ ∩ Γ→ VΓ of Γ near p where UΓ

is a neighborhood of p in Γ and VΓ is a neighborhood of 0 in Rn−1 =
{
(x2, · · · , xn) ∈ Rn−1}.

Now we can extend ϕΓ to a Fermi coordinate of Σi near p, and we write it as

ϕi : Ui ∩ Σi → VΓ × [0, ε)

for ε small enough.

This will give us the construction of τ̃ and D̃ as we can choose τ̃ = − ∂
∂x1

, D̃ = τ⊥g where

τ⊥g is the orthogonal complemented subspace with respect to τ under metric g. Then we
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can glue τ̃, D̃ near Γ locally by the partition of unity. Clearly, we know g satisfies the first

three conditions in the definition of the canonical metric.

Now, let us verify (τ, D) ∼θ (τ̃, D̃). We write τ̃ = hτ + η for 0 < h ∈ ⊕3
i=1C∞(Γ), η ∈

⊕3
i=1X(Γ). We extend η near Γ so that η ∈ Γ(1)

θ (Σ). We only need to show h ∈ Γ(E1) and

η ∈ Xθ(Γ).

Indeed, from the definition of Met(1)(Σ) and τ̃ = τ̃⊥ = hτ⊥ + η⊥ = hτ⊥ along Γ, we

have
1
h2 =

1
h2 g(τ̃, τ̃) = g(τ⊥, τ⊥) ∈ Γ(E1) along Γ.

Hence h ∈ Γ(E1). So we can view h as a function in C∞(Σ).

On the other hand, for any X ∈ X(Γ), we have g(τ, X)|Γ ∈ Γ(Eθ). Hence

0 =
3

∑
i=1

θigi(τi, X) =
3

∑
i=1

θigi
(

τ̃i − ηi

h
, X
)
= −

3

∑
i=1

θi

h
gi(ηi, X)

= −
3

∑
i=1

1
h

gΓ(θ
iηi, X)

holds along Γ. Hence ∑3
i=1 θiηi ≡ 0 by the arbitrariness of X. Hence, we know (τ, D) ∼θ

(τ̃, D̃).

Using Proposition 3.19, we know g also satisfies the fourth condition in the definition of

canonical metrics.

Hence, g is a canonical metric with triple junction structure (τ̃, D̃).

3.4.2 Geometric meanings of C(1) metrics

From the definition of C(1) metrics, we know not all metrics g = (g1, g2, g3) ∈ Met(Σ) can

become a C(1) metric for some triple junction structure (τ, D). At least, when we fix a C(0)

triple junction hypersurface Σ, we need to ensure gi = gj along Γ at least.

Indeed, we need additional conditions on g to ensure we can find (τ, D) such that g will

become a C(1) metric under this triple junction structure. As we will see, this can be viewed

as another definition of the triple junction structure.

Proposition 3.26. Let us fix a triple junction structure (τ, D), and a metric g ∈ Met(1)(Σ). We
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write Ai
Γ as the second fundamental form of Γ in Σi with respect to the outer unit normal vector field

along Γ. We write AΓ = (A1
Γ, A2

Γ, A3
Γ) for short. Then we have

3

∑
i=1

θi Ai
Γ(X, Y) = 0, ∀X, Y ∈ X(Γ).

Proof. WLOG (using Proposition 3.25), we assume g is a canonical metric. Hence τ will be

the outer unit normal vector field along Γ.

Hence, for any X, Y ∈ X(Γ), we extend them to vector fields X, Y ∈ Γ(1)
θ (D). Then we

find

∂

∂τ
g(X, Y) = g(∇τX, Y) + g(X,∇τY)

= g([τ, X], Y) + g(∇Xτ, Y) + g(X, [τ, Y]) + g(X,∇Yτ)

= g([τ, X], Y) + g(X, [τ, Y])− 2AΓ(X, Y) (3.6)

along Γ. Recall that [τ, X], [τ, Y] ∈ Xθ(Γ) and ∂
∂τ g(X, Y)|Γ ∈ Γ(Eθ), we get AΓ(X, Y) ∈ Γ(Eθ).

This is what we want to prove.

Moreover, the reverse part is true. We can always make it into a C(1) metric if in addition,

we have AΓ(X, Y) ∈ Γ(Eθ). We summarize it as follows.

Proposition 3.27. If g ∈ Met(Σ) satisfies

• g(X, Y) ∈ Γ(E1), ∀X, Y ∈ X(Γ),

• AΓ(X, Y) ∈ Γ(Eθ), ∀X, Y ∈ X(Γ).

Then there is a triple junction structure (τ, D) such that g is a C(1) metric under (τ, D).

Proof. We can construct (τ, D) as in the proof of Proposition 3.25 using Fermi coordinate.

Clearly, g will satisfy the first three conditions in the definition of canonical metrics. We

need a different proof to show that the fourth condition is true.

Indeed, this is not hard by noting the identity (3.6) is true and we already know

AΓ(X, Y) ∈ Γ(Eθ). This will give us ∂
∂τ g(X, Y)|Γ ∈ Γ(Eθ). Here, we have extended X, Y such
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that X, Y ∈ Γ(1)
θ (D). Hence, we see g is indeed a canonical metric under the triple junction

structure (τ, D).

Proposition 3.27 shows that, given a C(0) triple junction hypersurface Σ, we can construct

a C(1) metric first based on the conditions in Proposition 3.27, then we can recover the triple

junction structures. This means C(1) metric itself can be viewed as a triple junction structure

in some sense. Hence, we can call a metric C(1) even without the triple junction structure.

Remark 3.28. We can view the conditions in Proposition 3.27 for g as the C(1)-continuity of metrics

if we recall the definition of C(1)-continuity function space C(1)
E1,Eθ

(Σ).

In particular, recall that g = dx2
1 + gx1 if we use the Fermi coordinate. Then the first condition is

equivalent to gi
0 = g|Γ, and the second condition is equivalent to ∑3

i=1 θi ∂
∂x1

gi
x1
|x1=0 = 0.

Remark 3.29. Sometimes, we may also be interested in the following problem. Given g ∈ Met(Σ),

can we find a C(0) triple junction structure on Σ to ensure g is a C(1) metric? In other words, we

allow the diffeomorphisms on the boundary to change. This is the case considered in [Wan21b]. We

will go back to this case later on.

Remark 3.30. Recall that we can define the vector fields Γ(1)
E′ (D) associated with vector bundle E′

in Remark 3.9. Indeed, we can define the differential forms and C(1) metrics with respect to E′ using

similar methods. All the results hold for this general case. Almost all the proofs are essentially the

same, and we do not repeat them here since we do not use these spaces later on.

3.4.3 Relations with extrinsic metrics

Fix (N, gN) to be an (n + 1)-dimensional Riemannian manifold. We let φ : Σ → N be a

smooth minimal immersion with density θ defined in Subsection 3.1.1.

We write the metric on the ambient manifold N as gN . Clearly, Σ will automatically

have the pullback metric g := φ∗(gN). We will show that g will be a C(1) metric on Σ with

density θ.

Proposition 3.31. The pullback metric g will satisfy the conditions in Proposition 3.27. Hence, it
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will be a C(1) metric under some triple junction structure (τ, D). Moreover, we can choose τ such

that τi is the unit outer normal of Γ in Σi.

Proof. Note that gi|Γ = gj|Γ for i, j = 1, 2, 3 since g is the pullback metric. So we only need

to show ∑3
i=1 θi Ai

Γ ≡ 0.

We construct (τ, D) as in the proof of Proposition 3.25. If g satisfies the conditions in

Proposition 3.27, then g will automatically be a C(1) metric under (τ, D).

Note that τi will be the unit outer normal of Γ in Σi, so the minimality condition implies

∑3
i=1 θiτi = 0. Hence

3

∑
i=1

θi Ai
Γ(X, Y) =

3

∑
i=1

θigi(∇gi

XY, τi) =
3

∑
i=1

θigN(∇gi

XY, τi) =
3

∑
i=1

θigN(∇gN
X Y, τi)

=
3

∑
i=1

gN(∇gN
X Y, θiτi) = 0

for any X, Y ∈ X(Γ), where ∇g is the covariant derivative related to metric g.

Proposition 3.31 shows that minimal immersion is closely related to the triple junction

hypersurfaces. This is one of the reasons why we impose the triple junction structure on Σ.

This structure will help us study the properties of triple junction hypersurfaces arising from

minimal immersions even without the metrics.

3.4.4 Conformal invariance of C(1) metrics

In particular, we note the Met(1)(Σ) is invariant under conformal transformations in the

following sense.

Proposition 3.32. If g ∈ Met(1)(Σ), then for any h ∈ C(1)
E1,Eθ

(Σ) with h > 0, we have hg ∈

Met(1)(Σ).

Proof. The only non-trivial thing we need to verify hg ∈ Met(1)(Σ) is to show

hg(X, Y) ∈ C(1)
E1,Eθ

(Σ), ∀X, Y ∈ Γ(1)
θ (D).

But this is not hard by noting h, g(X, Y) ∈ C(1)
E1,Eθ

(Σ) and we can use Proposition 3.12.
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3.5 Diffeomorphisms between triple junction hypersurfaces

Let (Σ, Γ),
(
Σ̃, Γ̃

)
be two triple junction hypersurfaces. Let us fix the triple junction structure

(τ, D) (resp. (τ̃, D̃)) on Σ (resp. Σ̃). We suppose these two triple junction hypersurfaces

carry the same density function θ.

Definition 3.33. We say F = (F1, F2, F3) is a diffeomorphism between Σ and Σ̃ if each

Fi is a diffeomorphism between Σi and Σ̃i and when we restrict Fi on Γi or on Γ̊i, it is a

diffeomorphism.

We say F is a C(0) diffeomorphism between Σ and Σ̃ if F is a diffeomorphism and

Fi|Γ = Fj|Γ. (Keep the C(0) triple junction structure.)

We say F is a C(1) diffeomorphism between Σ and Σ̃ if F is a C(0) diffeomorphism

and there is (τ̂, D̂) ∼θ (τ̃, D̃) such that F∗(τ) = τ̂ along Γ. (Keep the C(1) triple junction

structure.)

Note that if F is a C(0) diffeomorphism, the pullback of function space C(0)
E (Σ̃) will be

the same with the function space E(0)
F∗E(Σ) where F∗E is the pullback bundle of E on Γ.

If F is a C(1) diffeomorphism, we know the pullback of C(1)
E1,Eθ

(Σ̃) will be C(1)
E1,Eθ

(Σ).

Usually, we will always assume there is a metric on Σ, so we may not care about the

diffeomorphism. However, when we want to study the properties less related to metrics,

like conformal structure, we may need to consider the diffeomorphism. We will talk about

the conformal structure on triple junction surfaces later on.
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Chapter 4

Sobolev spaces and elliptic operators

on triple junction hypersurfaces

In this chapter, we will fix a triple junction hypersurface Σ with a triple junction structure

(τ, D). We will assume Σ is compact. That is, we assume each Σi is compact. Suppose Σ

carries a density θ as usual. We will also fix a C(1) metric g on Σ. WLOG, we assume g is a

canonical metric. Under these conditions, we know the gradient ∇ := ∇g is well-defined on

Σ.

4.1 Sobolev spaces on triple junction hypersurfaces

Definition 4.1. For any 1 ≤ p < ∞, we define the Lp space on Σ by letting

Lp(Σ) :=
3⊕

i=1

Lp(Σi).

Similarly, we can define the Wk,p(Σ) space on Σ by letting

Wk,p(Σ) :=
3⊕

i=1

Wk,p(Σi) for k ≥ 1.

Roughly speaking, for u = (u1, u2, u3) ∈ Wk,p(Σ) (resp. u ∈ Lp(Σ)), we simply mean

each ui ∈Wk,p(Σi) (resp. ui ∈ Lp(Σi)).
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Remark 4.2. Since we have assumed Σ is compact, we know Lp
loc(Σ

i) = Lp(Σi) and Wk,p
loc (Σ

i) =

Wk,p
loc (Σ

i).

Note that in Definition 4.1, the spaces do not even rely on the C(0) triple junction

structure on Σ. Indeed, we know there is no meaning to talk about the restriction of the Lp

function on Γ. We cannot impose the boundary condition for the functions in Lp(Σ) using

C(0) triple junction structure.

However, we can indeed talk about the restriction of Wk,p functions on the boundary.

Definition 4.3. We suppose E ⊂ Γ×R3 is a smooth subbundle of Γ×R3. Then we define

Wk,p spaces related to E by

Wk,p
E (Σ) :=

{
u ∈Wk,p(Σ) : u|Γ ∈ Γ(E)

}
,

where we understand the restriction in the trace sense.

Here, we have used the notation u|Γ ∈ Γ(E) to mean u is a section of E defined almost

everywhere with respect to the measure on Γ induced by the metric g|Γ.

In particular, we can show that Wk,p
E (Σ) is a closed subset of Wk,p(Σ) under the norm

‖ · ‖Wk,p(Σ) as follows.

Proposition 4.4. Wk,p
E (Σ) is a closed subset of Wk,p(Σ) under the norm ‖ · ‖Wk,p(Σ). Hence, Wk,p

E (Σ)

is a Banach space.

Proof. Let
{

uj
}
⊂Wk,p

E (Σ) be a sequence of functions such that uj → u for some u ∈Wk,p(Σ)

in the sense of Wk,p norm.

Now let us fix p ∈ Γ and we want to show u|Γ is a section of E near p. Since E

is a smooth vector bundle, we know E is spanned by some orthonormal vector-valued

functions g1, · · · , gl defined near p on Γ. (Recall that each gs is a vector-valued function,

i.e., gs = (g1
s , g2

s , g3
s ).) So from uj ∈ Wk,p

E (Σ), we know uj|Γ can be written as the linear

combination of gs such that the coefficients are in Lp space near p. That is, we have

uj|Γ =
l

∑
s=1

ũjsgs, for some ũjs ∈ Lp(Γ) near p.
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Note that ũjs can be obtained by the inner product with gs as ũjs = ∑3
i=1 ui|Γgi

s.

We can extend {g1, · · · , gl} to the smooth orthonormal frame {g1, · · · , g3} for Γ×R3

near p. So we may also write u|Γ = ∑3
s=1 ũsgs since u ∈Wk,p(Σ).

The trace theorem says, if we have uj → u in the W1,p norm, then the restriction

uj|Γ → u|Γ convergences at least in Lp norm. So we know ũjs → ũs for s ≤ l and 0→ ũs for

s ≥ l + 1 in the Lp sense near p. This implies u|Γ ∈ Γ(E) locally near p. Since Γ is compact,

we know u ∈Wk,p
E (Σ).

Remark 4.5. Here we will suppose E is a smooth subbundle of Γ×R3, although we may consider

some weaker continuity E to extend our definitions. This is because the smooth case is enough for our

later application, and we can avoid some tedious technical definitions if E is smooth.

Note that the definition of Wk,p
E (Σ) does not require g to be a C(1) metric. In other words,

Definition 4.3 does not rely on the triple junction structure on Σ. It only relies on the C(0)

triple junction structure on Σ.

There are two spaces we use often. We define the following spaces,

Wk,p
1 (Σ) := Wk,p

E1
(Σ), Wk,p

θ (Σ) := Wk,p
Fθ

(Σ).

Hk
1(Σ) := Wk,2

1 (Σ), Hk
θ (Σ) := Wk,2

θ (Σ).

Sometimes, we will use another equivalent norm ‖ · ‖
Wk,p

θ (Σ)
instead of ‖ · ‖Wk,p(Σ) on

Wk,p
θ (Σ) defined by

‖u‖
Wk,p

θ (Σ)
:=

[
3

∑
i=1

θi‖ui‖p
Wk,p(Σi)

] 1
p

.

Similarly, we define Lp
θ norm by

‖u‖Lp
θ (Σ)

:=

[
3

∑
i=1

θi
∫

Σi
|u|p dΣi

] 1
p

.

Note that if p = 2, then Wk,2
E (Σ) will become a Hilbert space under the inner product

(·, ·)Wk,2(Σ) (or the inner product (·, ·)Wk,2
θ (Σ)). We write Hk

E(Σ) := Wk,2(Σ) and have the

following result by Proposition 4.4.
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Proposition 4.6. Hk
E(Σ) is a closed subset of Hk(Σ). Moreover, Hk

E(Σ) is a Hilbert space with

inner product (·, ·)Hk(Σ) (or (·, ·)Hk
θ (Σ)

) restricted on Hk
E(Σ).

4.1.1 Trace-zero spaces

We define the trace-zero space on Σ as

Wk,p
0 (Σ) :=

{
u ∈Wk,p(Σ) : ui|Γi = 0, ∀i = 1, 2, 3

}
, Hk

0(Σ) := Wk,2
0 (Σ).

Here, we understand ui|Γ in the trace sense and ui|Γ = 0 means ui|Γ is zero almost

everywhere.

Hence, we can define the trace-zero spaces related to a smooth subbundle E ⊂ Γ×R3 as

Wk,p
0,E(Σ) := Wk,p

0 (Σ) ∩Wk,p
E (Σ).

Note that Wk,p
0,E(Σ) is a closed subspace of Wk,p(Σ) under the norm ‖ · ‖Wk,p(Σ). In

particular, we can find the space is the closure of the following set

{
u ∈ C(0)

E (Σ) : u vanishes near ∂Σ
}

under the norm ‖ · ‖Wk,p(Σ).

Similarly, we can define the trace-zero Hilbert spaces Hk
0,E(Σ) := Wk,2

0 (Σ) ∩Wk,2
E (Σ). We

also use the following notations.

• Wk,p
0,1 (Σ) := Wk,p

1 (Σ) ∩Wk,p
0 (Σ), Wk,p

0,θ (Σ) := Wk,p
θ (Σ) ∩Wk,p

0 (Σ).

• Hk
0,1(Σ) = Wk,2

0,1 (Σ), Hk
0,θ(Σ) = Wk,2

0,θ (Σ).

4.2 Some integral notations

We make the integral convention to simplify our equations. Suppose Σ is a triple junction

hypersurface with C(1) metric g.
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For some function f = ( f 1, f 2, f 3) defined on Σ, we write

∫
Σ

f dΣ :=
3

∑
i=1

∫
Σi

f idΣi
gi .

Hence, the Lp
θ norm of f on Σ can be written as ‖ f ‖p

Lp
θ (Σ)

=
∫

Σ θ | f |p dΣ (recall that we

have defined | f |p := (
∣∣ f i
∣∣p)3

i=1).

Similarly, for any function f = ( f 1, f 2, f 3) defined on Γ, we will write

∫
Γ

f dΓ :=
3

∑
i=1

∫
Γ

f idΓg.

4.3 Second-order elliptic operators

We recall some basic definitions and results for elliptic operators on manifolds. Note that

these definitions do not rely on the C(0) triple junction structure on Σ. Hence we may forget

about any triple junction structures on Σ (only put metric g on Σ). Hence, the following

results are pretty standard, and we will not give detailed proof here. Readers may find them

in some well-known textbooks (for instance, [Nic20, Chapter 10]).

4.3.1 Definitions from the algebraic aspect

The operators OP(Σ) on Σ is the space of all the R-linear operators on C∞(Σ) → C∞(Σ).

We define the adjoint map ad( f ) : OP(Σ)→ OP(Σ) by ad( f )(T) := T ◦ f − f ◦ T = [T, f ]

for any T ∈ OP(Σ) and f ∈ C∞(Σ).

Now, we define P (m)(Σ) as partial differential operators of order ≤ m by

P (m)(Σ) :=
{

T ∈ OP(Σ) : [T, f ] ∈ P (m−1), ∀ f ∈ C∞(Σ)
}

, m ≥ 1,

and we write P(0)(Σ) := {T ∈ OP(Σ) : [T, f ] = 0, ∀ f ∈ C∞(Σ)}. Note that P (0)(Σ) can be

identified with C∞(Σ) by multiplication.

Lemma 4.7. For any P ∈ P (m)(Σ), we have ad( f ) ◦ ad(g)(P) = ad(g) ◦ ad( f )(P) for any

f , g ∈ C∞(Σ). Moreover, if fi, gi ∈ C∞(Σ) such that at q ∈ Σ, we have d fi(q) = dgi(q) for
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i = 1, · · · , m, then

[ad( f1)ad( f2) · · · ad( fm)P] |q = [ad(g1)ad(g2) · · · ad(gm)P] |q.

Lemma 4.7 tells us, the value of 1
m! [ad( f1)ad( f2) · · · ad( fm)P] |p depends only on co-

vector ξi = d fi(q) ∈ T∗q Σ. Hence, we may define the linear function on T∗⊗
m

q M by

σ(P)(ξ1, · · · , ξm) =
1

m!
[ad(ξ1) · · · ad(ξm)] P|q.

Since σ(P) is symmetric in the variables ξi by Lemma 4.7, we know the linear function

σ(P) is uniquely determined by the degree m polynomial σm(P)(ξ) := σ(P)(ξ, · · · , ξ) (might

be a zero polynomial).

We say P ∈ P (m)(Σ) has order m if σm(P) is not identically to zero. We will call σm(P)

as the principal symbol of P. In particular, we say P is a second-order operator on Σ if m = 2.

We say a second-order operator P is elliptic if for any q ∈ Σ and ξ ∈ T∗q (Σ)\ {0}, we

have σ2(P)(ξ) > 0.

Remark 4.8. In general, the ellipticity of a general degree operator only requires σm(P)(ξ) 6= 0.

Since we are only interested in second-order operators that are positive or negative defined, we will

assume σ2(P)(ξ) > 0 here.

Remark 4.9. We do not need the metric g to define the partial differential operators from the above

definitions.

Since we have assumed Σ is compact, we know if P is an elliptic second-order operator,

then P is uniformly elliptic in the sense that 1
Λ |ξ|

2 ≤ σ2(P) ≤ Λ |ξ|2 for some Λ large

enough.

For any P ∈ P (m)(Σ), we say a operator Q ∈ P (m)(Σ) is a formal adjoint of P, written as

P∗ := Q, if for any u, v ∈ C∞
0 (Σ), we have

∫
Σ

vP(u)dΣ =
∫

Σ
uQ(v)dΣ.

Here, C∞
0 (Σ) means the functions that vanish near ∂Σi on each Σi. We say P is formally

self-adjoint if P∗ = P.
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Remark 4.10. Note that we need the metric g here to define the adjoint-operator P∗. This is because

the volume form dΣ is associated with g.

If P is an elliptic second-order operator, then in the local coordinate {x1, · · · , xn} near q,

we can express P as

P(u) =
n

∑
i,j=1

aijuxixj +
n

∑
i=1

biuxi + c

for some smooth functions aij(x), bi(x), c(x) where (aij) is uniformly elliptic. The principal

symbol of P at q is

σ2(P) =
n

∑
i,j=1

aijξiξ j,

if gij = δij at q and we denote ξ = (ξ1, · · · , ξn) using canonical orthonormal basis on T∗q Σ.

Remark 4.11. This thesis only considers smooth second-order elliptic operators to avoid very tedious

technical details. The smooth case is already enough for our later application.

4.3.2 Description using tensors

This subsection shows that second-order elliptic operators can be viewed as a linear combi-

nation of several forms acting on the derivative of functions.

We already know if P ∈ P (0)(Σ), then we can find a smooth function f on Σ such that

P(u) = f u for any u ∈ C∞(Σ). For P ∈ P (1)(Σ), we can describe P in the following ways.

Proposition 4.12. If P ∈ P (0)(Σ), then there exists a smooth vector field X on Σ and a smooth

function f on Σ such that

P(u) =
∂

∂X
(u) + f u, ∀u ∈ C∞(Σ).

Proof. Note that by definition of P (0)(Σ), we know

[P, f ] ∈ P (0)(Σ)

for any f ∈ C∞(Σ). Hence, we may find a smooth function Q( f ) related to f such that

[P, f ](u) = Q( f )u. (4.1)
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Now we replace f by f g in equation (4.1) for smooth functions f , g, we have

P( f gu)− f P(gu) = Q( f g)u, ∀u ∈ C∞(Σ). (4.2)

On the other hand, we replace f by g in equation (4.1) and multiply f , we have

f P(gu)− f gP(u) = f Q(g)u, ∀u ∈ C∞(Σ) (4.3)

At last, we replace u by gu in equation (4.1) and get

P( f gu)− f P(gu) = gQ( f )u, ∀u ∈ C∞(Σ) (4.4)

Now from equations (4.2), (4.3), and (4.4), we find

Q( f g)u = f Q(g)u + gQ( f )u, ∀u ∈ C∞(Σ).

Hence, as a function, we know the operator Q satisfies Q( f g) = f Q(g) + gQ( f ). Hence

Q should correspond to a smooth vector field X, and the action of Q is just the derivative of

functions with respect to X.

Let us consider the operator P−Q. Note that for any f ∈ C∞(Σ), we have

[P−Q, f ](u) = [P, f ](u)−Q( f u) + f Q(u) = Q( f )u + f Q(u)−Q( f u) = 0, ∀u ∈ C∞(Σ).

This implies P− Q ∈ P (0)(Σ) and hence (P− Q)(u) = gu for some smooth function

g ∈ C∞(Σ). This means, we can write

P = Q + g =
∂

∂X
+ g.

Note that we can also understand the vector field X by one tensor (one form) ω := X[

using the metric g. So the action of P can be written as

P(u) = ω(∇u) + gu.

We have a similar result for P ∈ P (2)(Σ).
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Proposition 4.13. If P ∈ P (2)(Σ), then there exists a symmetric two-tensor J, a one-tensor ω, and

a smooth function g ∈ C∞(Σ) such that

P(u) = J(∇2u) + ω(∇u) + gu, ∀u ∈ C∞(Σ).

Proof. By definition of P ∈ P (2)(Σ), we know for any f ∈ C∞(Σ), there is a vector field

X = X f and a function R( f ) ∈ C∞(Σ) such that

[P, f ](u) =
∂

∂X f
u + R( f )u.

Using similar calculation as in Proposition 4.12, we have the identity

∂

∂X f g
u + R( f g)u− g

∂

∂X f
(u)− u

∂

∂X f
g− gR( f )u− f

∂

∂Xg
u− f R(g)u = 0, ∀u ∈ C∞(Σ).

(4.5)

Hence, we have

X f g = f Xg + gX f , (4.6)

R( f g) = f R(g) + gR( f ) +
∂

∂X f
g. (4.7)

The identity (4.6) implies, the vector X f at a point q ∈ Σ only depends on the values ∇ f at q.

Hence, we can think of X as a tensor field of T∗M⊗ TM, which maps ∇ f to another vector

field X f . We write J as the covariant 2-tensor obtained by 1
2 X using bundle isomorphisms

determined by metric g. That means J can be computed by

J(∇ f ⊗∇g) = J(∇ f ,∇g) =
1
2

∂

∂X f
g.

Note that J is a symmetric 2-tensor in view of identity (4.5). J can also act on ∇2 f since

∇2 f is a 2-vector.
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Let us consider the operator Q( f ) := R( f )− J(∇2 f ) and using identity (4.7), we have

Q( f g) = R( f g)− J(∇2( f g))

= f R(g) + gR( f ) + 2J(∇ f ,∇g)− gJ(∇2 f )− f J(∇2g)− J(∇ f ⊗∇g)− J(∇g⊗∇ f )

= f Q(g) + gQ( f ).

Hence, there is a one-form ω such that Q( f ) = ω(∇ f ).

Now let us consider the operator S(u) := P(u)− J(∇2u)−ω(∇u). It is easy to find

[S, f ](u) = 0, ∀u ∈ C∞(Σ).

Hence, there is a smooth function g ∈ C∞(Σ) such that S(u) = gu. In summary, we get

P(u) = J(∇2u) + ω(∇u) + gu, ∀u ∈ C∞(Σ).

Note that for any P(u) = J(∇2u) + ω(∇u) + gu that appeared in Proposition 4.13, we

can also write P in the divergence form as

P(u) = div(J · ∇u)− divJ(∇u) + ω(∇u) + gu

by the properties of divergence for tensors. It is easy to see that P is elliptic if and only if

J is a positive defined bilinear form at TqΣ for any q ∈ Σ. If P is a (formally) self-adjoint

operator, we can find ω(∇u) = divJ(∇u). Hence for the second-order self-adjoint elliptic

operator P, we can write it as P(u) = div(J · ∇u) + gu shortly.

4.4 First and second variation formulas

This section will find that the second-order elliptic operators naturally arise from the first

and second variations. This is one of the reasons why we focus on the general second elliptic

operators on triple junction hypersurfaces.

Suppose we have an extrinsic triple junction hypersurface φ : Σ→ N for some (n + 1)-
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dimensional Riemannian manifold (N, gN). Hence, each Σi will have the pullback metric

gi :=
(
φi)∗ (gN).

4.4.1 First variation of Σ

Definition 4.14. We say φt(·) = φ(·, t) : Σ× (−ε, ε)→ N is a smooth variation of φ, if each φi
t

is a smooth variation of Σi up to the boundary and each φt is an extrinsic triple junction

hypersurface in N. We say a smooth variation φt of φ has compact support (in the interior of

Σ) if φt = φ near ∂Σ.

In other words, if a smooth variation φt has compact support, then the boundary ∂Σ will

be fixed. Note that we do not fix Γ.

For any smooth variation φt of φ, there is an associated vector field X : Σ → TN,

such that each Xi is a smooth vector field along Σi, vanishes near Γi, and Xi|Γ = X j|Γ for

1 ≤ i, j ≤ 3.

We assume Σ has density θ. Then the area of φt(Σ) is given by

|φt(Σ)| =
3

∑
i=1

∫
Σi

θidΣi
φi∗

t (gN)
.

Suppose φt is a smooth variation for the extrinsic triple junction hypersurface φ : Σ→ N

with compact support. Let X be the associated variational vector field. We write the function

f = 〈X, ν〉gN
, where ν is a unit normal vector field along Σ.

We use the well-known first variation formulas for smooth hypersurfaces and compute

d
dt

∣∣∣
t=0
|φt(Σ)|,

d
dt

∣∣∣∣
t=0
|φt(Σ)| =

3

∑
i=1

∫
Σi

θidivΣi XdΣi
gi

= −
3

∑
i=1

∫
Σi

θi HΣi

〈
X, νi

〉
gN

dΣi
gi +

3

∑
i=1

∫
Γ

θi
〈

X, τi
〉

gN
dΓg (4.8)

where HΣi is the mean curvature of Σi respect to the unit normal vector field νi. Now, we
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can find φ is a critical point of the area function if and only if

HΣi ≡ 0 on Σi and
3

∑
i=1

θiτi ≡ 0 on Γ. (4.9)

Definition 4.15. We say an extrinsic triple junction hypersurface φ : Σ→ N with density θ

is minimal if the conditions (4.9) holds for Σ.

Remark 4.16. Note that ∑3
i=1 θiτi = 0 can hold only when θi + θi ≥ θk for any permutation

(ijk) of (123). Note that it should be a strict inequality if we recall the non-degenerate property in

definition of extrinsic triple junction hypersurfaces.

If we suppose the ambient manifold (N, gN) = (Rn+1, δij) is the standard Euclidean

space, we see that minimal immersions are equivalent to the following properties of coordi-

nate functions. Note that HΣi ≡ 0 is equivalent to the equation ∆Σi xj ≡ 0 where xj := xj ◦ φ

is the coordinate function for Σ. On the other hand, the vector field τ can also be viewed

as the derivative of coordinate function (e.g., τ = ∂x
∂τ ). Hence, we know the coordinate xj

should solve the following problem,
∆Σxj = 0, on Σ

xj ∈ C(1)
E1,Eθ

,
(4.10)

Moreover, it is easy to note the following result.

Proposition 4.17. Suppose Σ is an extrinsic triple junction hypersurface in Rn+1. Then Σ is

minimal with respect to the density θ if and only if every coordinate function xj satisfies Problem

(4.10) for 1 ≤ j ≤ n + 1.

Proposition 4.17 shows, it is worth to study the operator ∆Σ. In later applications, we

will use similar results like an immersion of Σ to a unit sphere is a minimal immersion if

and only if the coordinate functions solve particular elliptic partial differential equations.
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4.4.2 Second variation of Σ

We assume φt is a smooth variation of φ : Σ → N with compact support and X is the

associated vector field. We write f = 〈X, ν〉gN
. Then by the similar calculation that appeared

in [Wan22], we can get the following formula.

Proposition 4.18. Suppose φ : Σ→ N is a minimal extrinsic triple junction hypersurface. The for

any smooth variation φt of φ, we can compute the second derivative of its area by

d2

dt2

∣∣∣∣
t=0
|φt(Σ)| =

3

∑
i=1

∫
Σi

[∣∣∣∇Σi f i
∣∣∣2 − |AΣi |2 ( f i)2 − RicN(νi)( f i)2

]
θidΣi

−
3

∑
i=1

∫
Γ
( f i)2

〈
HΓ, τi

〉
gN

θidΓ. (4.11)

We can shorten the formula (4.11) as

d2

dt2

∣∣∣∣
t=0
|φt(Σ)| =

∫
Σ

θ
[
|∇Σ f |2 − |AΣ|2 f 2 − RicN(ν) f 2

]
dΣ−

∫
Γ

θ f 2 〈HΓ, τ〉gN
dΓ

using the notations in Section 4.2.

Proof. We will use the methods in [RS97, Appendix] (see also [Wan22, Theorem 4]).

Let (·)′ be D
dt |t=0(·). Here, we use D to denote the covariant derivative on N. Take

derivative with respect to t in the first variation formula (4.8), and we get

d2

dt2

∣∣∣∣
t=0
|φt(Σ)| = −

∫
Σ

θH′Σ f dΣ +
∫

Γ
θ
〈

X, τ′
〉

gN
dΓ. (4.12)

Note that here, we have used minimal conditions HΣ ≡ 0 and ∑3
i=1 θiτi = 0 along Γ.

Using the well-known formula (cf. [Ros93]), we have H′Σ = ∆Σ f + |AΣ|2 f + RicN(ν) f . This

will contribute to the interior term in the formula (4.11).

Now, let us compute τ′ = ((τ1)′, (τ2)′, (τ3)′).

Let SΣ = (SΣi)3
i=1 denote the shape operator of Σ with respect to the normal ν (i.e.,

〈SΣ(X), Y〉gN
= AΣ(X, Y) for X, Y ∈ X(Σ)). Let XT

Σ, XT
Γ denote the tangential component of

vector fields X when immersing Σ and Γ, respectively, into N.

49



Using Lemma 4.1 in [RS97], we have

ν′ = −∇Σ( f )− SΣ(XT
Σ).

Let
{

ej
}n−1

j=1 be an orthonormal frame of TpΓ for some p ∈ Γ. We write ej(t) = dφt(ei)

and decompose X = f ν + gτ + XT
Γ where g = 〈X, τ〉. Then we find

〈
e′j, τ

〉
gN

=
〈

Dej X, τ
〉

gN
= − f AΣ(ej, τ) +

∂g
∂ej
− AΓ(XT

Γ , ej),

for 1 ≤ j ≤ n− 1. Recall that AΓ = (A1
Γ, A2

Γ, A3
Γ).

Hence, we can compute 〈X, τ′〉gN
to get

〈
X, τ′

〉
gN

=
〈
τ′, ν

〉
gN

f +
〈
τ′, τ

〉
gN

g +
n−1

∑
j=1

〈
τ′, ej

〉
gN

〈
XT

Γ , ej

〉
gN

=−
〈
τ, ν′

〉
gN

f +
n−1

∑
j=1

〈
τ, e′j

〉
gN

〈
XT

Γ , ej

〉
gN

= f
∂ f
∂τ

+ f AΣ(τ, XT
Σ) + f AΣ(XT

Γ , τ)− ∂g
∂XT

Γ
+ AΓ(XT

Γ , XT
Γ )

= f
∂ f
∂τ

+ f gAΣ(τ, τ) + 2 f AΣ(XT
Γ , τ)− ∂g

∂XT
Γ
+ AΓ(XT

Γ , XT
Γ ). (4.13)

Note that the last three terms in identity (4.13) are sections of Eθ . Indeed, we can find

g ∈ Γ(Eθ) and ∑3
i=1 θi Ai

Γ = 0 by Proposition 3.26. For the term f AΣ(XT
Γ , τ), we have

3

∑
i=1

θi f i Ai
Σ(XT

Γ , τi) =
3

∑
i=1

θi
〈

DXT
Γ
τi, f iνi

〉
gN

=
3

∑
i=1

〈
DXT

Γ
(θiτi), X

〉
gN
−

3

∑
i=1

〈
DXT

Γ
(θiτi), XT

Γ

〉
gN
−

3

∑
i=1

θigi
〈

DXT
Γ
τi, τi

〉
gN

= 0,

using ∑3
i=1 θiτi ≡ 0 and

〈
τi, τi〉

gN
≡ 1 along Γ.

For the term f gAΣ(τ, τ), using minimal conditions, we have

3

∑
i=1

θi f igi AΣi(τi, τi) =
3

∑
i=1

n−1

∑
j=1
−θi f igi AΣi(ej, ej) = −

3

∑
i=1

θigi
〈

HΓ, f iνi
〉

gN

= −
3

∑
i=1

θigi
[
〈HΓ, X〉gN

− gi
〈

HΓ, τi
〉

gN
−
〈

HΓ, XT
Γ

〉
gN

]
=

3

∑
i=1

θi(gi)2
〈

HΓ, τi
〉

gN
.

Note that g2 = |X|2gN
− f 2 −

∣∣XT
Γ

∣∣2
gN

where |·|2gN
:= 〈·, ·〉gN

. Using the fact ∑3
i=1 θiτi = 0
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along Γ, we have
3

∑
i=1

θi f igi AΣi(τi, τi) = −
3

∑
i=1

θi( f i)2
〈

HΓ, τi
〉

gN
.

Combining with the identity (4.13) and (4.12), we have

d2

dt2

∣∣∣∣
t=0
|φt(Σ)| =

∫
Σ

θ f
(
−∆Σ f − |AΣ|2 f − RicN(ν) f

)
dΣ +

∫
Γ

θ f
(

∂ f
∂τ
− f 〈HΓ, τ〉gN

)
dΓ.

(4.14)

After integration by parts, we can get the formula (4.11).

In view of formula (4.14), we know that the second-order elliptic operator J := ∆Σ +

|AΣ|2 + RicN(ν) (the usual Jacobi operator) plays an essential role in the second variation

formula. In particular, there is an additional boundary term on Γ, which is associated with

the function 〈HΓ, τ〉gN
. We view this function as a part of elliptic operators. Please see the

next chapter for details.
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Chapter 5

Elliptic partial differential equations

on triple junction hypersurfaces

In this chapter, we will study second-order elliptic partial differential equations on the triple

junction hypersurface Σ. We will only focus on self-adjoint operators since their results can

be easily adapted to the general case. We will make the same assumptions for Σ used in

Chapter 4.

5.1 Definitions of problems

In this chapter, we will be interested in the following problem,

−Lu = f , in Σ,

u = 0, on ∂Σ,

u|Γ ∈ Γ(E),

(J(∇u, τ) + uh)|Γ ∈ Γ(E⊥)

(5.1)

for smooth subbundle E = E1 or E = Fθ . Here, the function f , defined on Σ, is given, and h,

a section of Γ×R3, is given. u is the unknown function. We suppose L is the self-adjoint

second-order elliptic operator on Σ and write L(u) as L(u) = div(J · ∇u)− cu for some

52



symmetric two-tensor J and smooth function c ∈ C∞(Σ). Note that we understand J as

J = (J1, J2, J3).

Usually, the function h will be related to the geometric properties of Σ, and we will

always assume that it is a smooth section of Γ×R3. Hence, we can view h as a particular

coefficient of L defined on Γ.

We will use (L, h) to denote the symmetric elliptic operators on Σ that may have the

non-zero coefficient h on Γ.

5.1.1 Weak solutions

Assume we have a smooth solution to Problem (5.1). For any v ∈ C(0)
E (Σ) that vanishes on

∂Σ, we can multiply vθ to Lu = 0 and integrate on Σ to get the following identity,

∫
Σ
[−vdiv(J · ∇u) + cuv] θdΣ =

∫
Σ

f vθdΣ.

Then we can apply integration by parts to get

∫
Σ
[J(∇u,∇v) + cuv] θdΣ−

∫
Γ

J(∇u, τ)vθdΓ =
∫

Σ
f vθdΣ. (5.2)

From the fourth condition in Problem (5.1), we know

∫
Γ
(J(∇u, τ) + uh)vθdΓ = 0.

Put the above identity into equation (5.2), we get the following identity,

∫
Σ
[J(∇u,∇v) + cuv] θdΣ +

∫
Γ

uvhθdΓ =
∫

Σ
f vθdΣ.

Now we can define the bilinear form B[·, ·] as

B[u, v] :=
∫

Σ
[J(∇u,∇v) + cuv] θdΣ +

∫
Γ

uvhθdΓ. (5.3)

Note that although B is defined only for smooth functions initially, we can extend the

definition of J to ensure B is defined on H1(Σ) since smooth functions are dense in H1(Σ).

Remark 5.1. We can compare the bilinear form B in equation (5.3) with the second variation formula
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(4.11). Note that the function h will corresponding to the term 〈HΓ, τ〉gN
in equation (4.11). This

is the reason why we have an extra h coming into the definition of Problem (5.1). In our case, the

function h is determined by the geometric properties of Σ. Hence it is reasonable to assume h is given

and smooth on Γ.

Definition 5.2. We say that u ∈ H1
0,E(Σ) is a weak solution to Problem (5.1) if for any

v ∈ H1
0,E(Σ), we have

B[u, v] = ( f , v)L2
θ(Σ)

,

where (·, ·)L2
θ(Σ)

is the L2 inner product on Σ with respect to the density θ.

5.2 Existence of weak solutions

First of all, let us show a preliminary energy estimate for later application.

Proposition 5.3. There exist some constants α, β, γ > 0 such that

α‖u‖2
H1

θ (Σ)
≤ B[u, u] + γ‖u‖2

L2
θ(Σ)
≤ β‖u‖2

H1
θ (Σ)

for all u ∈ H1
0(Σ). Here, we write Hk

0(Σ) := Wk,2
0 (Σ). The constants only depend on Σ, the operator

L and the L∞ norm of h.

Before the proof of this proposition, let us prove a trace theorem which is required in

this proof.

Lemma 5.4. For any fixed C > 0, there exists a constant Λ large enough such that,

‖∇u‖2
L2

θ(Σ)
+ Λ‖u‖2

L2
θ(Σ)
≥ C‖u‖2

L2
θ(Γ)

for any u ∈ H1
0(Σ).

Recall that ‖u‖2
L2

θ(Γ)
:=
∫

Γ u2θdΓ.

Proof of Lemma 5.4. Note that by trace theorem for u ∈ W1,1
0 (Σ), we can find a constant c1

such that ∫
Γ
|u| θdΓ ≤ c1

[∫
Σ
|∇u| θdΣ +

∫
Σ
|u| θdΣ

]
.
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Let us replace u by u2, then by Cauchy-Schwarz inequality, we have

∫
Γ

u2θdΓ ≤ c1

[∫
Σ

2 |u| |∇u| θdΣ +
∫

Σ
u2θdΣ

]
≤ c1ε

∫
Σ
|∇u|2 θdΣ +

( c1

ε
+ c1

) ∫
Σ

u2θdΣ.

Hence, we can choose ε small enough to ensure c1ε
2 < 1

C , so we have

C‖u‖2
L2

θ(Σ)
≤ ‖∇u‖2

L2
θ(Σ)

+ Λ‖u‖2
L2

θ(Σ)

for some Λ sufficiently large.

Proof of Proposition 5.3. Let us find some α, γ such that the inequality

α‖u‖2
H1

θ (Σ)
≤ B[u, u] + γ‖u‖2

L2
θ(Σ)

holds.

Note that since L is elliptic, we can find λ > 0 such that

1
λ
|ξ|2 ≤ J(ξ, ξ) ≤ λ |ξ|2 . (5.4)

Since the L∞ norm of h is bounded, we know there exists a constant c1 such that∣∣∣∣∫Σ
hu2θdΓ

∣∣∣∣ ≤ c1‖u‖2
L2

θ(Γ)
. (5.5)

Using Lemma 5.4, we can find Λ such that

c1‖u‖2
L2

θ(Γ)
≤ 1

2λ
‖∇u‖2

L2
θ(Σ)

+ Λ‖u‖2
L2

θ(Σ)
. (5.6)

Hence, combining the results of (5.4), (5.5), (5.6) and choose Λ′ such that Λ′ > |c|, then

we have

B[u, u] +
(

1
2λ

+ Λ + Λ′
)
‖u‖2

L2
θ(Σ)
≥ 1

2λ
‖∇u‖2

L2
θ(Σ)

+
1

2λ
‖u‖2

L2
θ(Σ)

=
1

2λ
‖u‖2

H1
θ (Σ)

.

Hence we can choose α = 1
2λ , γ = 1

2λ + Λ + Λ′ to make the first inequality holds.
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For the second inequality, it is easy to see by inequality (5.6) as

B[u, u] + γ‖u‖2
L2

θ(Σ)
≤ λ‖∇u‖2

L2
θ(Σ)

+
1

2λ
‖∇u‖2

L2
θ(Σ)

+ (γ + Λ + Λ′)‖u‖L2
θ(Σ)
≤ β‖u‖2

H1
θ (Σ)

for β sufficiently large.

Using the Fredholm alternative, we can get the existence theorem for the weak solutions

to Problem (5.1).

Let N ⊂ H1
0,E(Σ) be the spaces of functions u which solve Problem (5.1) with f ≡ 0

(homogeneous problem) weakly.

Theorem 5.5. Problem (5.1) has a weak solution if and only if ( f , v)L2
θ(Σ)

= 0 for any v ∈ N. In

particular, the solution u is unique in the sense of (u, v)L2
θ(Σ)

= 0 for any v ∈ N.

Remark 5.6. If N only contains zero function, then Theorem 5.5 says for any f ∈ L2(Σ), there

exists a unique weak solution u to Problem (5.1).

Proof of Theorem 5.5. Let us define the bilinear form

Bγ[u, v] := B[u, v] + γ(u, v)L2
θ(Σ)

where we choose γ as in Proposition 5.3. Note that by Proposition 5.3, we know Bγ indeed

defines a norm on Σ and this norm is equivalent to the usual norm ‖ · ‖H1
θ (Σ)

.

Note that the function f determines a bounded linear functional on H1
0,E(Σ) as

Tf : v→ ( f , v)L2
θ(Σ)

.

Hence, by Riesz Representation Theorem, there exists a unique element u ∈ H1
0,E(Σ)

such that

Bγ[u, v] = ( f , v)L2
θ(Σ)

, ∀v ∈ H1
0,E(Σ).

Hence, we get a map from f to u. Let us write this map as u = P( f ). It is easy to find P

is indeed a linear operator. Note that u ∈ H1
0,E(Σ) is a weak to Problem (5.1) if and only if

Bγ[u, v] = (γu + f , v)L2
θ(Σ)

for any v ∈ H1
0,E(Σ). This is equivalent to the following identity

u− γP(u) = P( f ). (5.7)
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Now let us show P is a bounded operator. Indeed, by Proposition 5.3, we have

α‖P( f )‖2
H1

θ (Σ)
≤ Bγ[P( f ), P( f )] = (P( f ), f )L2

θ(Σ)
≤ ‖P( f )‖H1

θ (Σ)
‖ f ‖L2

θ(Σ)
.

This implies α‖P( f )‖H1
θ (Σ)
≤ ‖ f ‖L2

θ(Σ)
. Hence P is a bounded linear operator P : L2(Σ) →

H1
0,E(Σ) ⊂ L2(Σ). Since H1

0,E(Σ) is compactly embedded in L2(Σ), we actually know P is a

bounded, linear, compact operator.

So we may apply the Fredholm alternative for the operator γP.

Let us write N :=
{

u ∈ H1
0,E(Σ) : u− γP(u) = 0

}
. Then from Fredholm alternative, we

know the equation (5.7) has a solution u ∈ H1
0,E(Σ) if and only if P( f )⊥N under the inner

product (·, ·)L2
θ(Σ)

. The solution is unique if we require u⊥N.

Note that

u ∈ N ⇐⇒ Bγ[u, v]− γBγ[P(u), v] = 0, ∀v ∈ H1
0,E(Σ)

⇐⇒ B[u, v] + γ(u, v)L2
θ(Σ)
− γ(u, v)L2

θ(Σ)
, ∀v ∈ H1

0,E(Σ),

⇐⇒ B[u, v] = 0, ∀v ∈ H1
0,E(Σ).

Hence, we know N is the same with N. On the other hand, for any u ∈ N, we note

Bγ[u, v] = 0⇐⇒ Bγ[γP(u), v] = 0⇐⇒ γ(u, v)L2
θ(Σ)

= 0, ∀v ∈ H1
θ (Σ)

(P( f ), u)L2
θ(Σ)

= 0⇐⇒ Bγ[P( f ), u] = 0⇐⇒ ( f , u)L2
θ(Σ)

= 0, ∀ f ∈ L2(Σ).

Hence, P( f )⊥N is equivalent to the ( f , v)L2
θ(Σ)

= 0 for all v ∈ N. Under this condition,

the solution u will exist and it is unique if we require (u, v)L2
θ(Σ)

= 0 for any v ∈ N.

5.3 Regularity

In this section, we will show that a weak solution to Problem (5.1) can be improved to a

smooth solution provided f is sufficiently regular. In particular, this solution should be a

classical solution to Problem (5.1).
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Theorem 5.7. Suppose f ∈ L2(Σ) and u ∈ H1
0,E(Σ) is a weak solution to Problem (5.1). Then

u ∈ H2(Σ),

with estimate

‖u‖H2
θ (Σ)
≤ C

(
‖ f ‖L2

θ(U) + ‖u‖H1
θ (Σ)

)
. (5.8)

Proof. The proof is quite standard, and it is similar to the proof of regularity for usual

elliptic PDEs.

Note that by the regularity of usual second-order elliptic PDEs, we know u is H2 away

from the triple junction Γ. We only need to show the regularity near the junction.

Since the regularity is purely a local result, we can choose a coordinate chart described

in Proposition 3.25 for any p ∈ Γ such that Σ can be written as the union of three half

balls Bδ+ = Bδ+(0) := (B1
δ+(0), B2

δ+(0), B3
δ+(0)) near p for some δ small enough. Here,

Bi
δ+(0) := {x = (x1, · · · , xn) ∈ Bδ(0) : x1 ≥ 0, |x| ≤ δ}.

Note that we can view Bδ+ as a triple junction hypersurface with corner in the sense that

we choose Γi = ∂Bi
δ+ ∩ {|x| = δ} and Γ̊i = ∂Bi

δ+ ∩ {x1 = 0}. The outer unit normal vector

field τ is given by τi = − ∂
∂x1

.

So we can write the operator L in the local coordinate as

L(u) =
(
aijuxi

)
xj
− cu

for some smooth function aij, c defined on Bδ+. Here, we have used Einstein summation.

Note that since u is a weak solution, we can find

∫
Bδ+

[
aijuxi vxj + cuv

]
θdx +

∫
Γ∩Bδ+

huvθdy =
∫

Bδ+

f vθdx, ∀v ∈ H1
0,E(Bδ+). (5.9)

where we use y to denote the coordinate of points in Rn−1. Here, we can view the space

H1
0,E(Bδ+) as the function v ∈ H1

0,E(Σ) which is supported in Bδ+ and v = 0 on ∂Bδ+ in the

trace sense.

We write U = Bδ+ and V = B δ
2+

for short. Let us choose a smooth cutoff function ζ
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such that

ζ = 1 in V, 0 ≤ ζ ≤ 1, ζ is supported in B 3δ
4 +.

Recall that here, we think ζ as ζ = (ζ1, ζ2, ζ3), each ζ i is defined on Bi
δ+(0). So the

function ζ ∈ C(0)
E1

(Σ).

For any t 6= 0, we define the differential quotient Dt
k as

Dt
ku =

u(x + tek)− u(x)
t

where {e1, · · · , en} is the standard orthonormal basis in Euclidean space. Note that if

u ∈ H1
0,E(Σ), then u(x + tek)|Γ is a section of E near p for t small enough and k 6= 1. Note

that here, we have used the fact E = E1 or E = Fθ . This implies, we can choose |t| > 0 small

enough, k ∈ {2, · · · , n} to ensure v := −D−t
k (ζ2Dt

ku) ∈ H1
0,E(Bδ+). (Note that we have used

results like Proposition 3.12 to ensure v ∈ H1
0,E(Bδ+).) This is the only part we need the

assumption E = E1 or E = Fθ .

We put v into the identity (5.9), and get

∫
U

aijuxi vxj θdx +
∫

Γ∩U
huvθdy =

∫
U

f̃ vθdx (5.10)

for f̃ = f − cu. We use the following notations

I :=
∫

U
aijuxi vxj θdx,

II :=
∫

Γ∩U
huvθdy,

III :=
∫

U
f̃ vθdx.

Now, by an elementary computation, we have

I =
∫

U
Dt

k(aijuxi)(ζ
2Dt

ku)xj θdx

=
∫

U
at

ijD
t
kuxi ζ

2Dt
kuxj θdx

+
∫

U

[
2at

ijD
t
kuxi ζζxj D

t
ku + Dt

kaijuxi D
t
kuxj ζ

2 + 2Dt
kaijuxi D

t
kuζζxj

]
θdx

=:I1 + I2, (5.11)
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where at
ij := aij(x + tek).

Note that we have

I1 ≥
1
λ

∫
U

ζ2 ∣∣Dt
kDu

∣∣2 θdx (5.12)

by the elliptic condition for some λ large. By Cauchy-Schwarz inequality, we can estimate

the term I2 by

I2 ≤ ε
∫

U
ζ2 ∣∣Dt

kDu
∣∣2 dx +

C
ε

∫
U

ζ
[∣∣Dt

ku
∣∣2 + |Du|2

]
θdx

≤ ε
∫

U
ζ2 ∣∣Dt

kDu
∣∣2 dx + C(ε)

∫
U
|Du|2 θdx. (5.13)

Note that we have used that the differential quotient can be controlled by L2 norm of

Du. Hence we get

I ≥ 1
2λ

∫
U

ζ2 ∣∣Dt
kDu

∣∣2 θdx− C
∫

U
|Du|2 θdx, (5.14)

from inequality (5.12), (5.13) by choosing ε = 1
2λ .

For the estimation on II, we have

|II| ≤
∫

Γ∩U

[∣∣ht∣∣ ∣∣Dt
ku
∣∣2 ζ2 +

∣∣Dt
khuDt

ku
∣∣] θdy

≤ C
∫

Γ∩U

[
ζ2 ∣∣Dt

ku
∣∣2 + u2

]
θdy

≤ 1
8λ

∫
U

∣∣D(ζDt
ku)
∣∣2 θdx + C

∫
U

ζ2 ∣∣Dt
ku
∣∣2 θdx + C

∫
U
|Du|2 θdx + C

∫
U

u2θdx

≤ 1
4λ

∫
U

ζ2 ∣∣Dt
kDu

∣∣2 θdx + C
∫

U
|Du|2 θdx (5.15)

by Cauchy-Schwarz inequality. Here we have used Lemma 5.4.

Similarly, we can estimate the term III by

|III| ≤ C
∫

U
(| f |+ |u|) |v| θdx

≤ ε
∫

U

∣∣Dt
k(ζ

2Dt
ku)
∣∣2 θdx +

C
ε

∫
U
( f 2 + u2)θdx

≤ Cε
∫

U

∣∣D(ζ2Dt
ku)
∣∣2 θdx +

C
ε

∫
U
( f 2 + u2)θdx

≤ Cε
∫

U
ζ2 ∣∣Dt

kDu
∣∣2 θdx + C(ε)

∫
U
( f 2 + u2 + |Du|2)dx. (5.16)

Now we can choose ε = 1
8λC in inequality (5.16) and combining the inequality (5.14) and
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(5.15) to get ∫
V

∣∣Dt
kDu

∣∣2 θdx ≤ C
∫

U
( f 2 + u2 + |Du|2)θdx

for k = 2, · · · , n and sufficiently small |t| 6= 0. Hence, from the properties of differential

quotient, we know uxi ∈ H1(V) with estimate

‖uxixj‖L2
θ(V) ≤ C

(
‖ f ‖L2

θ(U) + ‖u‖H1
θ (Σ)

)
. (5.17)

for 1 ≤ i, j ≤ n except the case i = j = 1.

Now we can use the equation to show the estimate (5.17) holds for i = j = 1.

Recall that we already know u is in H2
loc(Σ) away from triple junction Γ. Hence, u will

satisfy the equation

(aijuxi)xj + cuv = f , a.e. in U.

Note that the ellipticity of L implies a11 ≥ 1
λ . Hence, we have

|ux1x1 | ≤ C ∑
1≤i,j≤n,i+j>1

∣∣∣uxixj

∣∣∣+ |Du|+ |u|+ | f | .

Hence, we get ‖ux1x1‖2
L2

θ(V)
≤ C

(
‖ f ‖L2

θ(U) + ‖u‖H1
θ (Σ)

)
.

In summary, we get u ∈ H2(V) and hence u ∈ H2(Σ) by the partition of unity with

estimate

‖u‖H2
θ (Σ)
≤ C

(
‖ f ‖L2

θ(U) + ‖u‖H1
θ (Σ)

)
.

Remark 5.8. Recall that we used E = E1 or Fθ in the proof of Theorem 5.7. Indeed, we know it is

true for other kinds of E such as E = Eθ . But for general smooth E, we conjecture that Theorem 5.7

is valid, too. The tricky part is, we do not know if Dt
ku|Γ ∈ Γ(E) for u ∈ H1

0,E(Σ). Hence, we need

to construct a new differential quotient of u such that it maps H1
0,E(Σ) to H1

0,E(Σ) and shares similar

properties with the usual differential quotient.

Since we know u ∈ H2(Σ) if u is a weak solution to Problem (5.1) for f ∈ L2(Σ), we

know ∇u is well-defined on Γ in the trace sense. Hence, we can get the following result.
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Proposition 5.9. If u is a weak solution to Problem (5.1) with f ∈ L2(Σ), then (J(∇u, τ) + uh)|Γ

is in E⊥ for a.e. p ∈ Γ.

Note that here, a.e. means almost everywhere with respect to the boundary measure on

Γ.

Proof of Proposition 5.9. Note that this property is a local property. Hence, we can use the

coordinate chart that appeared in the proof of Theorem 5.7. This means, we can assume

the identity (5.9) holds for any v ∈ H1
0,E(Bδ+). We fix such v and apply integration by parts

since u ∈ H2(Σ) to get

∫
Bδ+

[
−(aijuxi)xj + cu

]
vθdx +

∫
Γ∩Bδ+

(−ai1uxi + uh) vθdy =
∫

Bδ+

f vθdx.

Note that we already know −(aijuxi)xj + cu = f a.e. in Σ. Hence, we get

∫
Γ∩Bδ+

(−ai1uxi + uh)vθdy = 0

for any v ∈ H1
0,E(Bδ+). This means (−ai1uxi + uh)⊥E a.e. near p on Γ with respect to the

density θ. Note that e1 = −τ under this coordinate chart and we can write −ai1uxi =

J(∇u, τ), we get

J(∇u, τ) + hu⊥E, a.e. on Γ.

Remark 5.10. From Proposition 5.9, we know the weak solution u should solve Problem (5.1) almost

everywhere on Σ or on Γ if f has enough regularity like f ∈ L2(Σ).

Now, we can get higher regularity results.

Theorem 5.11. Suppose m is a nonnegative integer and assume f ∈ Hm(Σ). We assume u ∈

H1
0,E(Σ) is a weak solution to Problem (5.1). Then

u ∈ Hm+2(Σ)

with the estimate

‖u‖Hm+2
θ (Σ) ≤ C

(
‖ f ‖Hm

θ (Σ) + ‖u‖L2
θ(Σ)

)
.
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Proof. The proof is quite close to the standard proof in the textbooks for elliptic PDEs. So

we only illustrate the idea in this proof.

By induction, we assume this theorem holds for m ≤ m0, and we want to prove this

theorem holds for m = m0 + 1, too. Now we fix a multi-index α = (α1, · · · , αn) such that

|α| := ∑n
i=1 αi = m0 + 1 and α1 = 0. We will also work at the local coordinate near p ∈ Γ.

We will use the notation

Dαu =
∂α

∂xα
u :=

∂α1

∂xα1

1

· · · ∂αn

∂xαn
n

u.

First of all, we can show ũ := Dαu is in H1
E(Bδ+) and solve a weak particular problem

(similar to Problem (5.1)) with f ∈ L2(Σ). So we know Dαu ∈ H2(Σ) with some estimations.

In particular, we can get ‖Dαu‖L2
θ(Σ)
≤ C(‖ f ‖

Hm0+1
θ (Σ)

+ ‖u‖L2
θ(Σ)

) for any |α| = m0 + 3

and 0 ≤ α1 ≤ 2.

Now, we can do the induction on the value of α1 to estimate ‖Dαu‖L2
θ(Σ)

using the

equation for u since the equation will hold point-wise almost everywhere. This step is very

similar to the last step in the proof of Theorem 5.7.

At last, we can get a smooth solution if we suppose f is smooth using general Sobolev

inequalities.

Theorem 5.12. Suppose u ∈ H1
0,E(Σ) is a weak solution to Problem (5.1) for some smooth function

f ∈ C∞(Σ), then we know

u ∈ C(0)
E (Σ).

In particular, u is a classical solution to Problem (5.1).

5.4 Eigenvalues and eigenfunctions

In this section, we will define the eigenvalues and eigenfunctions for the symmetric elliptic

operator (L, h).
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Definition 5.13. We say λ ∈ R is an eigenvalue for the symmetric elliptic operator (L, h) if

there exists a non-trivial u ∈ H1
0,E(Σ) such that u solves Problem (5.1) for f = λu. We say

such u is an eigenfunction corresponding to λ.

Note that by the regularity theorem (Theorem 5.11), we can improve the regularity of u

to Hm(Σ) for any natural number m by induction, and hence, u is indeed a smooth function.

By the properties of compact operators (spectral theory of compact operators), we can

get the following theorem directly.

Theorem 5.14. The set of eigenvalues A of (L, h) is at most countable. Moreover, we can write

A = {λk}∞
k=1 counting multiplicity with λ1 ≤ λ2 ≤ λ3 ≤ · · · such that λk → ∞ as k→ ∞.

For each eigenvalue λk, there is a corresponding eigenfunction wk ∈ H1
0,E(Σ) such that {wk}∞

k=0

forms an orthonormal basis of L2(Σ) with respect to the inner product (·, ·)L2
θ(Σ)

.

Moreover, wk, wl are also orthogonal to each other for k 6= l with respect to the bilinear form

B[·, ·].

Proof. We consider the compact operator P defined in the proof of Theorem 5.5. Note that

since P is a self-adjoint, compact, injective operator on L2(Σ), we may find the eigenvalues

{σk}∞
k=1 (counting multiplicity) and corresponding eigenfunctions {wk}∞

k=1 such that σk → 0

and {wk}∞
k=1 forms an orthonormal basis of L2(Σ) with respect to the inner product (·, ·)L2

θ(Σ)
.

Note that none of σk is zero since P is an injection. We may note σk > 0 since

(P( f ), f )L2
θ(Σ)

= Bγ[P( f ), P( f )] ≥ 0, ∀ f ∈ L2(Σ).

At last, we have

P(wk) = σkwk ⇐⇒ Bγ[P(wk), v] = σkBγ[wk, v], ∀v ∈ H1
0,E(Σ),

⇐⇒ (wk, v)L2
θ(Σ)

= σkB[wk, v] + σkγ(wk, v)L2
θ(Σ)

, ∀v ∈ H1
0,E(Σ),

⇐⇒ B[wk, v] =
(

1
σk
− γ

)
(wk, v)L2

θ(Σ)
, ∀v ∈ H1

0,E(Σ).

Hence wk is the eigenfunction of (L, h), which is corresponding to the eigenvalue

λk := 1
σk
− γ. We can rearrange λk such that λk is an increasing sequence such that

λk → +∞.
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Note that we observe

B[wk, wl ] = λk(wk, wl)L2
θ(Σ)

= 0, ∀k 6= l.

Standard steps can show that the eigenvalues can be characterized by a variational

formula using the Rayleigh quotient as

λk = min
Vk⊂H1

0,E(Σ)
max
u∈Vk

B[u, u]
‖u‖2

L2
θ(Σ)

,

where Vk is any k-dimensional subspace of H1
0,E(Σ).

We call the first eigenvalue λ1 as the principal eigenvalue of (L, h).

Remark 5.15. Note that, in general, the principal eigenvalue λ1 is not simple. Here is a simple

example. Suppose Σ is a triple junction hypersurface without boundary (i.e., ∂Σ = ∅) and consider

the operator (∆, 0) on space H1
0,Eθ

(Σ) where θ = (1, 1, 1). It is easy to find the principal eigenvalue is

0 and the corresponding eigenfunctions are locally constant functions (the function f = ( f 1, f 2, f 3)

that f i ≡ ci is a constant on Σi).

Note that the eigenfunction corresponding the principal eigenvalue may change signs due to the

condition ∑3
i=1 ui = 0 on Γ if u ∈ H1

0,Eθ
(Σ).

Readers may find more examples regarding this part in the paper [Wan21a]. The dimension of

eigenspace corresponding to the principal eigenfunction might be quite large, although they are all

connected under quotient topology.

Remark 5.16. If the elliptic operator (L, h) is defined on the space H1
0,E1

(Σ), then the principal

eigenvalue is simple. Moreover, the corresponding eigenfunction for the principal eigenvalue does not

change sign on Σ.
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Chapter 6

Index and nullity of symmetric elliptic

operators

In this chapter, we fix a triple junction hypersurface Σ with C(1) metric used in Chapter 4 and

Chapter 5. Besides, we will also fix a second-order symmetric elliptic operator (L, h) defined

on Sobolev space H1
0,E(Σ) for E = E1 or Fθ (Indeed, we can assume E is the subbundle such

that the Regularity Theorem 5.7 holds). From this chapter, we will simply write L instead of

(L, h) to denote the second-order symmetric elliptic operator. We will use B[·, ·] to denote

the bilinear form associated with L.

We will give a method of computing index and nullity for triple junction hypersurface

Σ using Dirichlet-to-Neumann maps. This method has been successfully carried out in

[Wan21a] to compute the index and nullity of stationary networks.

6.1 Basic definitions

From Theorem 5.14, we know we can write {λk}∞
k=1 as the eigenvalues of L such that

λ1 ≤ λ2 ≤ · · · with λk → ∞.

Definition 6.1. We define the index of L, and write it as Ind(L), to be the largest k such that

λk < 0.
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We define the nullity of L, and write it as Nul(L), to be the number of λk such that

λk = 0.

Note that by the min-max characterization of eigenvalues of L, we have the following

results.

Proposition 6.2. The index of L is the dimension of the largest subspace of H1
0,E(Σ) such that B is

negative-definite on it.

The nullity of L is the dimension of the largest subspace of H1
0,E(Σ) such that B vanishes on it.

Here, we say B vanishes on subspace V ⊂ H1
0,E(Σ) if for any v ∈ V and u ∈ H1

0,E(Σ), we

have B[u, v] = 0.

We define the several notations used later on.

• Jλ(L), the space of all eigenfunctions corresponding to the eigenvalue λ.

• J −0 (L) :=
⊕

λ<0 Jλ(L).

• J 0
0 (L) := J0(L). This is the null space of L.

We can easily find Ind(L) = dimJ −0 (L) and Nul(L) = dimJ 0
0 (L).

6.1.1 Stability operators and stable triple junction hypersurfaces

If φ : Σ → N is an extrinsic triple junction hypersurface in N, where N is an (n + 1)-

dimensional Riemannian manifold, then we can define the stability operator J = (J, h) using

the second variation formula (4.11).

Definition 6.3. We say J = (J, h) is a stability operator for Σ if we define

J = ∆Σ + |AΣ|2 + RicN(ν), h = − 〈HΓ, τ〉gN
,

and suppose the operator (J, h) acts on space H1
0,θ(Σ).

Now we can define the Morse index and nullity for triple junction hypersurface Σ.
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Definition 6.4. We define the (Morse) index of Σ, written as Ind(Σ), as the index of J.

Similarly, we define the nullity of Σ, written as Nul(Σ), as the nullity of J.

In particular, we can talk about the stable triple junction hypersurfaces.

Definition 6.5. We say Σ is stable if Ind(Σ) = 0.

6.1.2 Curvature estimate and generalized Bernstein theorem for triple junction

surfaces

In this subsection, we will briefly summarize the result in [Wan22]. Usually, the curvature

estimate will become complicated due to the terms on triple junctions.

Let us assume φ : Σ→ R3 is a minimal triple junction surface in R3 equipped with the

standard Euclidean metric. We will suppose Σ is stable.

From Schoen, Simon, Yau’s trick [SSY75], we can get the Lp curvature estimate for triple

junction surface Σ.

Theorem 6.6. [Wan22, Theorem 5] Suppose Σ is a stable minimal triple junction surface in R3.

Let f ∈ H1
0(Σ) ∩ L∞(Σ) such that sign( f ) |AΣ|p−1 | f |p is a section of Fθ almost everywhere when

restricted on Γ. Then for any 1 < p < 5
4 , we have

∫
Σ
|AΣ|2 | f |2p θdΣ ≤ C

∫
Σ
|AΣ|2p−2 | f |2p−2 |∇Σ f |2 θdΣ

+
∫

Γ

[
p− 1

2

∣∣∣∣ ∂

∂τ
(log |AΣ|)

∣∣∣∣− HΓ · τ
]
|AΣ|2p−2 | f |2p θdΓ, (6.1)

for some constant C which does not depend on p.

Note that there is an extra boundary term on Γ as shown in inequality (6.1).

The proof of this theorem is quite similar to Schoen, Simon, and Yau’s standard proof.

We need to keep in mind the condition 1 < p < 5
4 and use some tricks to deal with the

singular integration.

As a consequence of Lp curvature estimate, we can get a type of generalized Bernstein

theorem.
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Theorem 6.7. [Wan22, Theorem 6] Suppose Σ is an orientable stable minimal triple junction surface

in R3. We assume Σ is complete without boundary. Then Γ cannot be compact.

Recall that orientable is defined in Subsection 3.1.3. Note that complete Σ may not

be bounded in R3 and hence the stable here means the stability inequality holds for any

smooth variation with compact support.

Remark 6.8. As a corollary, we know if Σ is a complete orientable stable minimal triple junction

surface in R3 and Γ is compact, then Σ is unstable.

Key steps in the proof of Theorem 6.7. We only illustrate the key steps in the proof of Theorem

6.7. Interested readers can refer [Wan22] for details.

We prove this theorem by contradiction. Suppose Σ is a complete orientable stable

minimal triple junction surface in R3 and assume Γ is compact.

First, let us consider the case of none of Σi is flat.

• Write Lp estimate (6.1) in the following ways,

∫
Σ

θ |AΣ|2p | f |2p dΣ ≤ C1I + II− III,

I :=
∫

Σ
θ |AΣ|2p−2 | f |2p−2 |∇Σ f |2 dΣ,

II :=
∫

Γ

p− 1
2

θ

∣∣∣∣ ∂

∂τ
log |AΣ|

∣∣∣∣ |A|2p−2 | f |2p dΓ,

III :=
∫

Γ
HΓ · τθ |AΣ|2p−2 | f |2p dΓ.

• Fix three nonzero constants ci such that ∑3
i=1 θici = 0. Choose a cut-off function ρr

supported in T2r(Γ) and equal to 1 in Tr(Γ). Here Tr(Γ) is the tubular neighborhood

of Γ with the distance induced by metric gΣ. Define gi = ∏j 6=i |AΣj |. Choose f as

f i = sign(ci)
∣∣∣ci
∣∣∣ 1

p
(

ρ1(gi)
p−1

p + ρr − ρ1

)
for r > 2. Hence, we can check sign( f ) | f |p |AΣ|p−1 ∈ H1

θ (Σ). (Note that Fθ = Eθ here.)

• We can estimate III =
∫

Γ HΓ · τθ |AΣ|2p−2 | f |2p dΓ =
∫

Γ HΓ · τc2θ ∏3
i=1 |AΣi |2p−2 dΓ ≥ 0

by adjusting ci.
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• We can control II =
∫

Γ
p−1

2 θ
∣∣∣ ∂

∂τ log |AΣ|
∣∣∣ |A|2p−2 | f |2p dΓ < ε by choosing p close to 1

enough.

• Now, let us estimate the term I. We write

I =
∫

Σ
θ |AΣ|2p−2 | f |2p−2 |∇Σ f |2 dΣ

=

(∫
S
+
∫

T2(Γ)\S
+
∫

T2r(Γ)\Tr(Γ)

)
θ |AΣ|2p−2 | f |2p−2 |∇Σ f |2 dΣ,

and split I = I′(Singularity) +I1(Regular and near Γ) +I2(Regular and far from Γ).

Here, S denotes the small neighborhood of zeros of second fundamental form. (Recall

that the set of zeros of second fundamental form is discrete if Σi is non-flat.) We can

choose the region S small to ensure I′ < ε. Then we choose p closed to 1 enough to

ensure I1 < ε. At last, we fix p and choose r large enough to ensure I2 < ε.

Combining the above inequalities, we can find |AΣ| should vanish everywhere. Hence,

we know at least one of Σi is flat. Let us suppose Σ1 is flat, then we can find that Σ2 and Σ3

are capillary minimal hypersurfaces in some half-spaces. We can use the similar method to

get AΣi ≡ 0 for i = 2, 3.

Note that if Σ1 is flat, we can find Σ2, Σ3 are minimal surfaces with constant contact

angle with a plane in R3. There are several results related to the curvature estimates for

capillary minimal surfaces. See for instance [HS21, LZ21].

Now if we know all of Σi are flat, we know the intersection of Σ1 and Σ2 should be a part

of straight line. Hence, by the unique contiunation and completeness of minimal surfaces,

we know Γ contains a straight line. This contradicts the fact that Γ is compact.

Remark 6.9. Although Theorem 6 in [Wan22] needs the condition that Σ has quadratic area growth,

it has been pointed out by Luen-fai Tam that we can deduce Σ has quadratic area growth from the

stable condition and Γ being compact by the argument due to D. Fischer-Colbrie [FC85].

The tough part for the proof of Theorem 6.7 is, we need the careful choice of the test

function f in the Lp curvature estimate (6.1) such that f will satisfy the condition in Theorem

6.6. Usually, the constant functions do not meet those conditions. This will introduce many
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extra terms near Γ, and we can analyze them carefully to ensure they are all controlled. In

addition, we also need to choose p sufficiently closed to 1 to control the boundary terms.

This is why we only get the generalized Bernstein theorem only for the surface case and

why we require Γ to be compact.

Remark 6.10. There is another proof for Theorem 6.7. We assume Σ as stated in Theorem 6.7 and Γ

compact. Let’s fix three nonzero constants ci with ∑3
i=1 θici = 0. For any positive integer n, we can

choose the test function f ∈ H1
θ (Σ) as

f i(p) =


ci, dist(p, Γ) ≤ 1

ci
(

1− log dist(p,Γ)
n

)
, 1 ≤ dist(p, Γ) ≤ en,

0, dist(p, Γ) ≥ en.

Put f into the stability inequality, and we have

∫
Σ∩T1(Γ)

c2 |A|2 θdΣ ≤
∫

Σ
|∇ f |2 dΣ−

∫
Γ

c2HΓ · τθdΣ.

We can choose a suitable c to make sure
∫

Γ c2HΓ · τθdΓ ≥ 0 as before. Then, we have

∫
Σ∩T1(Γ)

c2 |A|2 θdΣ ≤
n

∑
i=1

∫
Σ∩(Tei (Γ)\Tei−1 (Γ))

c2

e2i−2n2 θdΣ ≤ C
n

3

∑
i=1

(ci)2.

Hence, we can choose n→ ∞ to get |A| ≡ 0 in T1(Γ). This impies Σi is flat for each i.

6.2 Dirichlet-to-Neumann maps and index theorem

6.2.1 Dirichlet-to-Neumann maps on each Σi

We will fix an operator L on triple junction hypersurface Σ.

For any i = 1, 2, 3, we will define a Dirichlet-to-Neumann map Ti on boundary Γ̊i = Γ.

We use the following notations.

• Jλ(Σi, L), the space of all eigenfunctions corresponding to the eigenvalue λ of operator

L defined on Σi. More precisely, it is the space of functions solving the following
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problem, 
−Lu = λu, in Σi,

u = 0, on ∂Σi.

• J −0 (Σi, L) :=
⊕

λ<0 Jλ(Σi, L).

• J 0
0 (Σ

i, L) := J0(Σi, L).

• DτJ 0
0 (Σ

i, L) :=
{

J(∇v, τi) ∈ C∞(Γ) : v ∈ J 0
0 (Σ

i, L)
}

, where J is the symmetric 2-

tensor associated with the operator L.

• (DτJ 0
0 (Σ

i, L))⊥ :=
{

v ∈ C∞(Γ) :
∫

Γ vwdΓ = 0, ∀w ∈ DτJ 0
0 (Σ

i, L)
}

. This is the L2 or-

thogonal complement space of DτJ 0
0 (Σ

i, L).

• Ind(Σi, L) = dimJ −0 (Σi, L), the index of Σi with respect to the operator L.

• Nul(Σi, L) = dimJ 0
0 (Σ

i, L), the nullity of Σi with respect to the operator L.

Remark 6.11. Note that all these definitions are only related to the operator Li := L|Σi .

For any g ∈ C∞(Γ), we consider the following problem on Σi.
Lu = 0, in Σi,

u = g, on Γ,

u = 0, on Γi.

(6.2)

The classical existence theorem for elliptic PDEs on Σi implies the following results.

Proposition 6.12. Problem (6.2) has a smooth solution if and only if

g ∈ (DτJ 0
0 (Σ

i, L))⊥.

Moreover, this solution is unique up to an addition of function v ∈ J 0
0 (Σ

i, L).

Based on Proposition 6.12, we may define the Dirichlet-to-Neumann through the follow-

ing proposition.
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Proposition 6.13. For each g ∈ (DτJ 0
0 (Σ

i, L))⊥, we can choose a solution ug to Problem (6.2)

with given g such that

J(∇ug, τ)
∣∣
Γ + hig ∈ (DτJ 0

0 (Σ
i, L))⊥.

Moreover, such ug is unique, and hence we can define the Dirichlet-to-Neumann map Ti by

Ti : (DτJ 0
0 (Σ

i, L))⊥ → (DτJ 0
0 (Σ

i, L))⊥

g → J(∇ug, τ)
∣∣
Γ + hig.

Recall that h is the function defined on Γ associated with elliptic operator L. We will call

ug as the L-extension of g.

Proof of Proposition 6.13. Let u be one solution to Problem (6.2) with given g. First of all, we

can find a unique g0 ∈ DτJ 0
0 (Σ

i, L) such that

J(∇u, τ)|Γ + hig + g0⊥DτJ 0
0 (Σ

i, L)

by the properties of orthogonal projection. Let v0 ∈ J 0
0 (Σ

i, L) such that J(∇v0, τ) = g0 on Γ.

Then we can choose ug = u + v0 and note ug is a solution to Problem (6.2) by Proposition

6.13.

If there is another solution ũg satisfying the same conditions, we can consider u = ug− ũg,

which solves 
Lu = 0, on Σi,

u = 0, on ∂Σi,

J(∇u, τ) = 0, on Γ.

(6.3)

The third condition in Problem (6.3) comes from the following reasons.

Note u ∈ J 0
0 (Σ

i, L) by the first two conditions in Problem (6.3). So J(∇u, τ)|Γ ∈

DτJ 0
0 (Σ

i, L). On the other hand, we know J(∇ug, τ)
∣∣
Γ + hig ∈ (DτJ 0

0 (Σ
i, L))⊥, J(∇ũg, τ)

∣∣
Γ +

hig ∈ (DτJ 0
0 (Σ

i, L))⊥, hence J(∇u, τ)|Γ ∈ (DτJ 0
0 (Σ

i, L))⊥. This will imply J(∇u, τ) = 0

on Γ.
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However, by the Hopf lemma, we should have u ≡ 0 on Σi. Hence, ug is unique. So the

Dirichlet-to-Neumann map Ti is well-defined.

Note that Ti is a self-adjoint compact operator defined on some function spaces on Γ

according to the results in [AtEKS14]. Moreover it has discrete eigenvalues and we write

them as σ1(Ti) ≤ σ2(Ti) ≤ · · · such that σj(Ti) → ∞ as j → ∞. These eigenvalues are

usually called Steklov eigenvalues.

Remark 6.14. The usual Dirichlet-to-Neumann map defined on Σi won’t contain the hi term here.

We add hi term since we will use it to define the Dirichlet-to-Neumann on Σ. Note that it is a

self-adjoint operator defined on (DτJ 0
0 (Σ, L))⊥. Such an operator remains compact since hi is

smooth and bounded.

Moreover, the operator Ti here gives us the connection between the following two eigenvalue

problems. The first problem is the problem with zero Dirichlet boundary condition on Σi,
−Lu = λu, in Σi,

u = 0, on ∂Σ.
(6.4)

The second one is the problem with Neumann boundary condition associated with hi defined as
−Lu = λu, in Σi,

u = 0, on Γi,

J(∇u, τ) + hiu = 0, on Γ.

(6.5)

Then the index and nullity of Problem (6.5) can be computed by the index and nullity of (6.4)

and Ti. Precisely, we have the following results,

• Ind(N) = Ind(D) + Ind(Ti) + Nul(D),

• Nul(N) = Nul(Ti),

where we use D to denote Problem (6.4), and N to denote Problem (6.5).

Readers may refer to H. Tran’s work [Tra20] for similar works. Note that this result is slightly

more general than the result in [Tra20, Theorem 3.3, Theorem 3.6] since we do not require hi to be a
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constant. The proof for the index and nullity theorem for this case is essentially the same as his work

with obvious modification.

6.2.2 Dirichlet-to-Neumann maps on triple junction hypersurface Σ

We write

• DτJ 0
0 (Σ, L) :=

{
g = (g1, g2, g3) ∈ C∞(Γ, R3) : gi ∈ DτJ 0

0 (Σ
i, L), ∀i = 1, 2, 3

}
,

• (DτJ 0
0 (Σ, L))⊥ :=

{
g = (g1, g2, g3) ∈ C∞(Γ, R3) : gi ∈ (DτJ 0

0 (Σ
i, L))⊥, ∀i = 1, 2, 3

}
.

It is easy to see that C∞(Γ, R3) = DτJ 0
0 (Σ, L)⊕ (DτJ 0

0 (Σ, L))⊥ is an orthogonal decom-

position of C∞(Γ, R3) with respect to the inner product of L2
θ(Γ). (Recall that (g1, g2)L2

θ(Γ)
=

∑3
i=1
∫

Γ gi
1gi

2θidΓ.)

By the definition of Dirichlet-to-Neumann maps on each Σi, we know we can define a

map

T : (DτJ 0
0 (Σ, L))⊥ → (DτJ 0

0 (Σ, L))⊥,

g = (g1, g2, g3) → T(g) = (T1(g1), T2(g2), T3(g3)).

In general, we are interested in the function space C(0)
E (Σ). Note that we have the

orthogonal decomposition of C∞(Σ, R3) as

C∞(Σ, R3) = C(0)
E (Σ)⊕ C(0)

E⊥ (Σ).

Hence, we define the orthogonal projection PE as

PE : C∞(Σ, R3) → C(0)
E (Σ),

g → PE(g).

Now, we can define the Dirichlet-to-Neumann map T on the set C(0)
E (Σ)∩ (DτJ 0

0 (Σ, L))⊥

by T(g) = PE ◦ T(g). Note that the projection PE will map (DτJ 0
0 (Σ, L))⊥ to the set

(DτJ 0
0 (Σ, L))⊥ ∩ C(0)

E (Σ) by the property of projection. Hence T is an operator on the space

VE,L(Σ) where we define

VE,L(Σ) := (DτJ 0
0 (Σ, L))⊥ ∩ C(0)

E (Σ). (6.6)
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Remark 6.15. Note that (DτJ 0
0 (Σ, L))⊥ has an orthogonal decomposition (DτJ 0

0 (Σ, L))⊥ =

VE,L(Σ)⊕VE⊥,L(Σ).

It is easy to verify that T is a compact self-adjoint operator on the space VE,L(Σ). Hence,

it will have discrete eigenvalues. We write σk(T) as the eigenvalues of T where we assume

σ1 ≤ σ2 ≤ · · · → ∞. (See Remark 6.16) For each σ ∈ R, we let Gσ be the subspace of VE,L(Σ)

with eigenvalue σ with respect to the operator T.

We use the following notations similarly as before.

• G−(T) :=
⊕

σ<0 Gσ,

• G0(T) := G0(T),

• Ind(T) := dimG−(T),

• Nul(T) := dimG0(T).

We call the operator T defined on VE,L(Σ) as the Dirichlet-to-Neumann map on triple

junction hypersurface Σ. Note that the k-th eigenvalue of T can also be characterized

variationally by

σk(T) = min
Vk∈VE,L(Σ)

max
g∈Vk

(T(g), g)L2
θ(Γ)

(g, g)L2
θ(Γ)

(6.7)

where Vk is the k-dimensional subspace of VE,L(Σ).

Remark 6.16. From the min-max identity (6.7), we can find σ1(T) ≥ min
{

σ1(T1), σ1(T2), σ1(T3)
}

as we note for any g ∈ VE,L(Σ), we have

(T(g), g)L2
θ(Γ)

= (PE(T(g)), g)L2
θ(Γ)

= (T(g), g)L2
θ(Γ)

=
3

∑
i=1

θi(Ti(gi), gi)L2(Γ)

≥
3

∑
i=1

θiσ1(Ti)(gi, gi)L2(Γ) ≥ min
1≤i≤3

{
σ1(Ti)

} 3

∑
i=1

θi(gi, gi)L2(Γ) ≥ min
1≤i≤3

{
σ1(Ti)

}
(g, g)L2

θ(Γ)
.

This shows σ1(T) > −∞ and hence the formula (6.7) is well-defined.

Now we define the space related to the nullity as

WE,L(Σ) := DτJ 0
0 (Σ, L) ∩ C(0)

E (Σ).
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Then, the space C∞(Σ, R3) can be decomposed as

C∞(Σ, R3) = VE,L(Σ)⊕WE,L(Σ)⊕VE⊥,L(Σ)⊕WE⊥,L(Σ).

Then, we have the following index theorem for triple junction hypersurface Σ.

Theorem 6.17 (Index Theorem for triple junction hypersurface Σ). The index of elliptic operator

of L defined on space C(0)
E (Σ) can be computed by

Ind(L) =
3

∑
i=1

Ind(Σi, L) + Ind(T) + dim(WE,L(Σ)). (6.8)

Similarly, the nullity of L can be computed by

Nul(L) = Nul(T) + dim(WE⊥,L(Σ)). (6.9)

Proof. This proof is essentially the same as Index Theorem for Networks [Wan21a, Theorem

4.1] and Nullity Theorem for Networks [Wan21a, Theorem 4.3]. Actually, the case for triple

junction hypersurfaces is a bit easier since we only have three hypersurfaces here. Hence,

we only illustrate the key steps in this proof. Interested readers may find detailed proof in

[Wan21a].

First part. Prove (6.8).

First, we prove Ind(L) ≥ ∑3
i=1 Ind(Σi, L) + Ind(T) + dim(WE,L(Σ)).

Let J −0 (Σ, L) := ⊕3
i=1J

−
0 (Σi, L) and V− := { f ∈ C∞(Σ) : f i is the L-extension of gi for

i = 1, 2, 3 on Σi for some g = (g1, g2, g3) ∈ G−}.

A short calculation shows, B is negative-definite on J −0 (Σ, L) and V−. Now we can

construct a new space V1 ⊂ C∞(Σ) based on WE,L(Σ) by the following lemma.

Lemma 6.18 (Lemma 4.2 in [Wan21a]). Let g ∈WE,L(Σ) and g is not identically zero. Define

Wg :=
{

f ∈ C(1)
E (Σ) : f |Γ = cg for some c ∈ R, f⊥BJ −0 (Σ, L)

}
.

Here, we use ⊥B to denote the orthogonal with respect to the bilinear form B. Then L has index 1 on

the space Wg.
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Now, we can choose a basis
{

gj
}l

j=1 of WE,L(Σ) with l = dim(WE,L(Σ)) and extend gj to

f j based on Lemma 6.18 such that B[ f j, f j] < 0 for j = 1, 2, · · · , l. Hence, we can choose the

space V1 spanned by
{

f j
}l

j=1.

At last, we can verify that three spaces J −0 (Σ, L), V− and V1 are orthogonal to each other

under the bilinear form B. Hence Ind(L) ≥ ∑3
i=1 Ind(Σi, L) + Ind(T) + dim(WE,L(Σ)).

Second, we need to show Ind(L) ≤ ∑3
i=1 Ind(Σi, L) + Ind(T) + dim(WE,L(Σ)). We write

W = J −0 (Σ, L)⊕V− ⊕V1. Suppose W is one of the (maximal) subspaces of C(0)
E (Σ) such

that dimW = Ind(L) and B is negative definite on it. Let PW,W be the orthogonal projection

of W to W with respect to the bilinear form B.

Now we can show that PW,W is onto by the maximum property of W. On the other hand,

we can show PW,W is one-to-one using Lemma 6.18.

Hence, we have Ind(L) ≤ ∑3
i=1 Ind(Σi, L) + Ind(T) + dim(WE,L(Σ)).

Second part. Prove (6.9).

The proof of nullity is a bit easier than the above proof. We define V0 := { f ∈ C∞(Σ) : f i

is the L-extension of gi for i = 1, 2, 3 on Σi for some g ∈ G0}. It is easy to verify that B

vanishes on V0.

For any g ∈ WE⊥,L(Σ), we know there is a function u = (u1, u2, u3) such that ui|Γ ≡ 0,

J(∇ui, τ)
∣∣
Γ ≡ gi on Γ and Lu = 0 in Σi based on definition of DτJ 0

0 (Σ, L). In particular,

since g ∈ C(0)
E⊥ (Σ), we know u solves the following problem,

−Lu = 0, in Σ,

u = 0, on ∂Σ,

u|Γ ≡ 0 ∈ Γ(E),

J(∇u, τ)|Γ + hu|Γ = J(∇u, τ)|Γ = g ∈ Γ(E⊥).

(6.10)

Hence, u ∈ J −0 (Σ, L). If we write V2 := {u : u is a solution to Problem (6.10) for

g ∈WE⊥,L(Σ) }, then B vanishes on V2. So we find the space WE⊥,L(Σ) will contribute to the

nullity of operator L. This will give us Nul(L) ≥ Nul(T) + dim(WE⊥,L(Σ)).

On the other hand, by an elementary argument, if B[ f , v] = 0 for any v ∈ H1
E(Σ) for
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some f ∈ C(0)
E (Σ), then f ∈ V0 ⊕V2. This implies Nul(L) ≤ Nul(T) + dim(WE⊥,L(Σ)).

Hence, Nul(L) = Nul(T) + dim(WE⊥,L(Σ)).

Remark 6.19. We can give a short explanation of why the index theorem can hold. In particular, we

need to know the meaning of spaces WE,L(Σ). Note that for any g ∈WE⊥,L(Σ), we know there is a

function u = (u1, u2, u3) solving Problem (6.10).

But for g ∈WE,L(Σ), we can construct u such that u solves the following problem,

−Lu = 0, in Σ,

u = 0, on ∂Σ,

u|Γ ≡ 0 ∈ Γ(E),

J(∇u, τ)|Γ + hu|Γ = g ∈ Γ(E).

This function looks like only satisfies Lu = 0 but fails to be smooth. We can imagine that the

energy B[u, u] will decrease when we try to make it smooth. Hence it will contribute to the index of

L.

6.3 Applications

In this section, we will give an application of the index theorem.

A typical triple junction surface in S3 is the union of three geodesic half spheres with a

common geodesic circle as their boundaries. For example, we take

Σi :=
{
(x1, x2, x3, x4) ∈ S3 : x1 = t cos ζ i, x2 = t sin ζ i, x2

3 + x2
4 = 1− t2, t ≥ 0

}
for ζ i = 2π

3 i. Here, we take θ = (1, 1, 1). So Σ will be a minimal triple junction surface in S3.

The stability operator J = (J, h) on Σ is given by

Ju = ∆Σu + RicS3
(ν)u = ∆Σu + 2, h = − 〈HΓ, τ〉gN

≡ 0.

This operator is defined on the space C(0)
E (Σ) where E = {(p, g) ∈ Γ×R3 : ∑3

i=1 gi = 0}.

Let D :=
{
(x2, x3, x4) ∈ S2 : x2 ≥ 0

}
be the half sphere. We write L = ∆Du + 2 to be the
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elliptic operator on D. It is easy to note Ind(D, L) = 0 and Nul(D, L) = 1 on D. Moreover,

the coordinate function x2 ∈ J0(D, L). Hence, we know Ind(Σi, J) = Ind(D, L) = 0,

Nul(Σi, J) = Nul(D, L) = 1, and DτJ 0
0 (D, L) only contains constant functions.

Now, we may want to know the property of TD defined on D. Instead of directly

computing the TD, we can use the Morse index and nullity of the geodesic sphere to help

us.

Recall that the Morse index of geodesic sphere S2 in S3 is one, and the nullity of S2 is

3. We can cut it into two half-spheres along one geodesic on this sphere. Note that, in

particular, the index and nullity theorem is not only true for triple junction hypersurface

but also true for some other junctions with the other orders. We can view S2 as a double

junction surface by identifying the boundaries of two half spheres. In this case, we can

also define the Dirichlet-to-Neumann map T on S2, which will be identical to the usual

Dirichlet-to-Neumann map TD since two half spheres are isometric to each other. Hence,

we may apply the index and nullity theorem to S2 to get

• Ind(S2) = 2Ind(D) + Ind(TD) + dimDτJ 0
0 (S

2, J) ∩ Γ(Ê).

• Nul(S2) = Nul(D) + dimDτJ 0
0 (S

2, J) ∩ Γ(Ê⊥).

where Ê :=
{
(p, g = (g1, g2)) ∈ ∂D×R2 : g1 + g2 = 0

}
.

Recall that DτJ 0
0 (S

2, J) =
{
(p, g) ∈ ∂D×R2 : g1 = c1, g2 = c2

}
only contains constant

vector-valued functions, it is easy to see

DτJ 0
0 (S

2, J) ∩ Γ(Ê) =
{
(p, g) ∈ ∂D×R2 : g1 = −g2 = c ∈ R

}
,

DτJ 0
0 (S

2, J) ∩ Γ(Ê⊥) =
{
(p, g) ∈ ∂D×R2 : g1 = g2 = c ∈ R

}
.

Hence, dimDτJ 0
0 (S

2, J) ∩ Γ(Ê) = DτJ 0
0 (S

2, J) ∩ Γ(Ê⊥) = 1.

Hence, we get Ind(TD) = 0 and Nul(TD) = 2.

Remark 6.20. Indeed, the null space of TD is generated by the coordinate functions x3, x4.

Now, from the index and nullity theorem, we can compute the index and nullity of Σ by

80



• Ind(Σ) = 3Ind(D) + Ind(T) + dimDτJ 0
0 (Σ, J) ∩ Γ(E),

• Nul(Σ) = Nul(T) + dimDτJ 0
0 (Σ, J) ∩ Γ(E⊥).

It is easy to observe that dimDτJ 0
0 (Σ, J)∩ Γ(E) = 2 and dimDτJ 0

0 (Σ, J)∩ Γ(E⊥) = 1 by

writing down those constant functions explicitly.

Now let us analyze the operator T defined on (DτJ 0
0 (Σ, L))⊥ ∩ Γ(E). We write V :=

(DτJ 0
0 (Σ, L))⊥ ∩ Γ(E) for short. Note that for g ∈ V, we know g3 = −g2 − g1 and gi ∈

DτJ 0
0 (D, L). So we can express V using g1, g2 and the T defined on V can be written as

T((g1, g2,−g1 − g2)) = (TD(g1), TD(g2),−TD(g1)− TD(g2)).

Hence, we can find Ind(T) = 2Ind(TD) = 0, Nul(T) = 2Nul(TD) = 4.

So we get Ind(Σ) = 2, Nul(Σ) = 5.

Hence, we can find that the locally constant functions contribute to the index of Σ, and

every function in the null space of Σ with respect to operator ∆+ 2 is generated by a rotation

on S3.
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Chapter 7

Conformal structures on triple

junction surfaces

In this chapter, we will only focus on the 2-dimensional triple junction hypersurfaces,

namely triple junction surfaces.

7.1 Basic definition

Let J = (J1, J2, J3) be the almost complex structure on Σ. This means each Ji will be an

almost complex structure on Σi. Recall that the almost complex structure means each Ji is a

smooth tensor field of degree (1, 1) such that (Ji)2 = −Id where we view Ji : TΣi → TΣi as

a vector bundle homeomorphism.

Definition 7.1. We say J is compatible with (τ, D) if there exists a vector field η ∈ X(Γ) such

that τ(p) = sign(p)J(η)(p) for any p ∈ Γ.

Recall that sign is a sign function defined in Subsection 3.1.3. Hence, this compatible

condition requires that the orientation determined by J agree with the usual orientation on

Σ.

Remark 7.2. Note that the compatible condition is only depending on the equivalence class of (τ, D).

That is, if we suppose (τ, D) ∼ (τ̃, D̃), then J is compatible with (τ, D) if and only if J is compatible
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with (τ̃, D̃).

Hence, for any C(0) triple junction surface with given almost complex structure J on Σ, if the

orientation on Σ is induce by Σ (by changing the orientation on Σ if needed), then we can define C(1)

triple junction structure by choose τ = J(η) for some non-vanishing vector field η ∈ X(Γ) to ensure

J(η) pointing outside.

Another way to define the conformal structure is to use the equivalence class of met-

rics. Recall that we have known the metric space Met(1)(Σ) is invariant under conformal

transformation (Proposition 3.32).

Definition 7.3. We say two metrics g1, g2 ∈ Met(1)(Σ) are conformally equivalent to each other

if there exists h ∈ C(1)
E1,Eθ

(Σ) such that g2 = hg1.

Note that for any g ∈ Met(1)(Σ), we can define the conformal structure J by define

Ji(e1) = e2 for any orthonormal basis {e1, e2} of TqΣi that {e1, e2} agrees with the orientation

on Σi.

From the standard result for conformal metrics, we have

Proposition 7.4. g1, g2 are conformally equivalent to each other if and only if they induce the same

conformal structure on Σ.

Before the proof, let us recall a standard result of conformal changing of metric.

Lemma 7.5. Let Σ be a Riemann surface with boundary and suppose g is a metric. We write Kg as

the Gaussian curvature of g and κg as the geodesic curvature of ∂Σ under metric g. Let u ∈ C∞(Σ),

then the Gaussian curvature and geodesic curvature can be characterized by

Ke2ug = e−2u (Kg − ∆Σ,gu
)

, (7.1)

κe2ug = e−u
(

κg +
∂u
∂τ

)
. (7.2)

where ∆Σ,g is the Laplacian operator on Σ with respect to the metric g.

Recall that in general, we will define the geodesic curvature as κg =
〈
∇ηη,−τ

〉
where η

is the unit tangent vector field on Γ.
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Proof of Proposition 7.4. If g1, g2 are conformally equivalent, then we can easy to see they

will induce the same conformal structure.

Conversely, if they induce the same conformal structure, then we know we can find g1 =

hg2 for some h ∈ C∞(Σ). We only need to show h ∈ C(1)
E1,Eθ

(Σ). Note that g1, g2 ∈ Met(0)(Σ)

implies h ∈ C(0)
E1

(Σ).

Now we note ∑3
i=1 θiκi

g1
= 0 and ∑3

i=1 θiκi
g2

= 0, where we have used κi
g to denote the

geodesic curvature of Γ under the metric g. Hence, by Lemma 7.5, we have

∂ log h
∂τ
|Γ ∈ Γ(Eθ),

which implies ∂h
∂τ |Γ ∈ Γ(Eθ). Hence h ∈ C(1)

E1,Eθ
(Σ).

Conversely, we have the following proposition.

Proposition 7.6. Suppose J is a conformal structure on Σ, then we can find g ∈ Met(1)(Σ) such

that J can be induced by g.

Proof of Proposition 7.6. At first, we can choose gi
0 for each i such that Ji can be induced by

gi. Now we want to find a function h ∈ C∞(Σ) such that hg0 ∈ Met(1)(Σ).

Let us fix a metric gΓ on Γ. So we know gi
0|Γ = f igΓ for some smooth and positive

function f i defined on Γ. Now we extend f i to a smooth positive function on Σi and define

g1 = 1
f g0. So the g1 will satisfy gi

1|Γ = gΓ on Γ.

Now let us choose u ∈ C∞(Σ) such that u ≡ 0 on Γ and ∂ui

∂τ = −κi
gi

1
. Then we can choose

g = e2ug1.

Hence, by Lemma 7.5, we know κi
g ≡ 0 on Γ for each i. Note that J can also be induced

by g.

Now we only need to show g ∈ Met(1)(Σ) for some (τ, D) compatible with J. From

Proposition 3.27, we know g ∈ Met(1)(Σ) for some (τ, D) and g is the canonical metric under

such triple junction structure. Hence, τ should be the outer unit normal vector field. Let η

be the unit tangent vector field along Γ under metric g and agree with the orientation on Γ.

Note that J(η) = signτ by the definition of sign and the properties of metric g, we know
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(τ, D) will be compatible with J. So the metric g is one of the metrics we want. (Note that

we have written signτ = sign(·)τ(·) as a multiplication of function and a vector field.)

Remark 7.7. We may only use the equivalence class of Met(0)(Σ) to define the conformal structure

on Σ. But usually, the metric in Met(1)(Σ) might have better properties. For example, we may have

a generalized Gauss-Bonnet formula that holds on Σ.

Lemma 7.8 (Generalized Gauss-Bonnet formula). Suppose g ∈ Met(1)(Σ), then we have

3

∑
i=1

∫
Σi

Kgi θidΣi +
3

∑
i=1

∫
Γi

κi
gθidΓi =

3

∑
i=1

θiχ(Σi).

Proof. This is a consequence of usual Gauss-Bonnet formula on each Σi and the condition

∑3
i=1 θiκi

gi = 0.

Note that if θ = (1, 1, 1) and ∂Σ = ∅, then we have

∫
Σ

KdΣ = χ(Σ)

where χ(Σ) = ∑3
i=1 χ(Σi). For the later applications, we write χ(Σ) = ∑3

i=1 θiχ(Σi), too.

7.2 Uniformization

Usually, the conformal structure on surfaces plays a vital role in the studying of minimal

surfaces; see, for instance, [MP04]. In order to study the conformal structure on a triple

junction surface, it is better to look for a kind of uniformization on Σ at first and find a good

metric that can represent this conformal structure.

7.2.1 χ(Σ) < 0 case

Let us focus on the χ(Σ) < 0 case first.
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Theorem 7.9. If Σ is a compact surface with ∂Σ = ∅ satisfying χ(Σ) < 0, with given Riemannian

metric g ∈ Met(1)(Σ), then for any negative function K ∈ C∞(Σ), we can find a new metric g

conformally equivalent to g such that the Gaussian curvature of g is given by K.

Note that by Lemma 7.5, the above theorem is equivalent to finding a smooth function

u ∈ C(1)
E1,Eθ

(Σ) such that

∆u = K0 − Ke2u, (7.3)

where K0 = Kg and we use ∆ := ∆Σ,g. Hence, we will look for a solution to the following

problem 
∆u = K0 − Ke2u, in Σ,

u|Γ ∈ Γ(E1), on Γ,

∂u
∂τ |Γ ∈ Γ(Eθ), on Γ.

(7.4)

Comparing with Problem (5.1) (without boundary terms), we can call Problem (7.4) as

the semilinear elliptic problem.

The proof for Theorem 7.9 is quite standard. We may borrow the method in [Tay11,

Section 2, Chapter 14].

Let us define an energy E(u) by

E(u) =
∫

Σ

[
1
2
|∇u|2 + K0u

]
θdΣ.

We consider the subset of H1
1(Σ) (recall that H1

1(Σ) := Wk,2
E1
(Σ)) defined by

S :=
{

u ∈ H1
1(Σ) :

∫
Σ

Ke2uθdΣ = 2πχ(Σ)
}

.

The idea is that we want to minimize the energy E(u) in the class S and hope the

minimizer would be a solution to Problem (7.4).

Roughly speaking, we will show the following things,

• S is a C1-submanifold of H1
1(Σ).

• infS E > −∞.
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• F has a minimizer.

• The minimizer would solve Problem (7.4).

Note that u ∈ S is a necessary condition to Theorem 7.9 since, the new metric e2ug will

satisfy the Gauss-Bonnet formula (cf. Lemma 7.8), then we have

2πχ(Σ) =
∫

Σ
θKe2udΣ.

Lemma 7.10. S is a nonempty C1-submanifold of H1(Σ) if K < 0 and χ(Σ) < 0.

Proof. S is nonempty since we may choose u is a constant function defined by

u ≡ 1
2

log
2πχ(Σ)∫

Σ KθdΣ
,

which is well-defined since K < 0 and χ(Σ) < 0.

Now let us consider the map J : H1
1(Σ)→ R defined on

J(u) =
∫

Σ
Ke2uθdΣ.

Note that we already know J is a C1 function on H1(Σ) (cf. [Tay11, Lemma 2.2, Chapter

14]). Moreover, we note DJ(u) = 2Ke2u for any u ∈ H1
1(Σ), which is non-zero as an element

of dual space of H1
1(Σ). Hence, by implicit function theorem, we know S is a C1-submanifold

of H1
1(Σ).

Lemma 7.11. If we have χ(Σ) < 0, K < 0, then infS E > −∞.

Proof. Let u0 = u− u where u :=
∫

Σ uθdΣ∫
Σ θdΣ , which is the weighed average of u. Since u ∈ S,

we have

e2u
∫

Σ
Ke2u0 θdΣ = 2πχ(Σ)⇐⇒ u =

1
2

log
2πχ(Σ)∫

Σ Ke2u0 θdΣ
. (7.5)
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Hence, we have

E(u) =
∫

Σ

[
1
2
|∇u0|2 + K0(u0 + u)

]
θdΣ

=
∫

Σ

[
1
2
|∇u0|2 + K0u0θ

]
dΣ + u

∫
Σ

K0θdΣ

=
∫

Σ

[
1
2
|∇u0|2 + K0u0θ

]
dΣ + πχ(Σ) log

2πχ(Σ)∫
Σ Ke2u0 θdΣ

, (7.6)

where we have used Gauss-Bonnet formula for the last equality.

Now we need to show log
(
−
∫

Σ Ke2u0 θdΣ
)
> −∞. This is easy to see since −K = |K| ≥

δ > 0 for δ small enough since Σ is compact, so we have

∫
Σ
|K| e2u0 θdΣ ≥ δ

∫
Σ
(1 + 2u0)θdΣ = δ

∫
Σ

θdΣ. (7.7)

Hence log(−
∫

Σ Ke2u0 θdΣ) > −∞.

On the other hand, we may apply Poincaré inequality and Cauchy-Schwarz inequality

to get ∫
Σ

K0u0θdΣ ≤ C
ε
+ ε

∫
Σ
|∇u0|2 θdΣ. (7.8)

Note that the Poincaré is valid for u0 by a simple contradiction argument.

Combining the inequality (7.6), (7.7), (7.8), we have

inf
u∈S
E(u) > −∞.

Now we can go back to the proof of our theorem.

Proof of Theorem 7.9. Let uk ∈ H1
1(Σ) such that E(uk) → infS E . We will prove they are

bounded under H1
θ (Σ) norm.

We can suppose E(uk) ≤ infS E + 1. Note that by inequality (7.6), (7.7), and (7.8), we

have
1
4

∫
Σ

θ |∇uk0|2 θdΣ− C ≤ E(uk) ≤ inf
S
E + 1, (7.9)

where uk0 := uk − uk for some constant C. Note that by identity (7.5), we know the
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average of uk is bounded from above from the proof of Lemma 7.11. This is because the

Moser-Trudinger inequality is valid for uk0. Hence, in view of the inequality (7.9), we have

∫
Σ
|K| e2uk0 θdΣ ≤ C < ∞.

So the average of u is bounded by identity (7.5).

Combining the inequality (7.9), we know uk is bounded under the norm H1
θ (Σ). So we

may take a subsequence of uk (denotes it as uk), such that uk → u weakly in H1
1(Σ).

Recall that the map u→ e2u is a compact map from H1(Σ) to L1(Σ), we know e2uk → e2u

in L1 sense strongly. Hence u ∈ S.

On the other hand, we have
∫

Σ K0ukθdΣ →
∫

Σ K0uθdΣ and lim infk→∞
∫

Σ θ |∇uk|2 dΣ ≥∫
Σ θ |∇u|2 dΣ, we have E(u) ≤ infS E . Hence u is a minimizer of E on S.

Now let us show u is a solution to Problem (7.4). Note that by Lagrange Multipliers

Theorem, we can find some λ ∈ R such that u is a critical point for the functional E(u)−

λ
(∫

Σ Ke2uθdΣ− 2πχ(Σ)
)
.

Hence, we get

∫
Σ

[
〈∇u,∇v〉+ K0v− 2λKe2uv

]
θdΣ = 0, ∀v ∈ H1

1(Σ). (7.10)

So we may use the regularity theorem (Theorem 5.7 and Theorem 5.11) to find u ∈ H2(Σ).

This imply u is at least Hölder continuous and bounded on Σ. Hence e2u ∈ H2(Σ). We can

repeat it inductively to get u ∈ C(0)
E1

(Σ).

Let us choose v ≡ 1 in equation (7.10) and get

2πχ(Σ) =
∫

Σ
K0θdΣ = 2λ

∫
Σ

Ke2uθdΣ.

Hence λ = 1
2 .

In summary, we know u solves Problem (7.4), and hence we finish the proof.

In particular, we can choose K = −1 on Σ. This will lead to the following uniformization

theorem.

Theorem 7.12 (Uniformization). Suppose Σ is a compact triple junction surface with given

89



Riemannian metric g ∈ Met(1)(Σ) such that ∂Σ = ∅ and χ(Σ) < 0. Then there is a hyperbolic

metric g ∈ Met(1)(Σ) which is conformally equivalent to g.

Remark 7.13. Theorem 7.12 can also be summarized as follows.

For any (Σ, g) satisfying condition stated in Theorem 7.9, we can find a new metric g on Σ such

that the following holds,

• Each gi is conformal to gi on Σi.

• gi|Γ ≡ gj|Γ along Γ.

• Each gi is a hyperbolic metric on Σi.

• ∑3
i=1 θiκi

gi = 0 along Γ.

7.2.2 χ(Σ) = 0 case

For this case, we can prove the following theorem.

Theorem 7.14. Suppose Σ is a compact triple junction surface with given Riemannian metric

g ∈ Met(1)(Σ) such that ∂Σ = ∅ and χ(Σ) = 0. Then there is a flat metric g ∈ Met(1)(Σ) which

is conformally equivalent to g.

Note that we say a metric g is flat if and only if its Gaussian curvature Kg is zero

everywhere.

Proof of Theorem 7.14. The proof for this theorem is easier than the case of χ(Σ) < 0. We can

minimizing the energy E on the following set

S :=
{

u ∈ H1
1(Σ) :

∫
Σ

uθdΣ = 0
}

.

It is pretty easy to see the minimizer exists, and it solves the following problem weakly
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(and hence smoothly by regularity results),
∆u = K0, in Σ,

u|Γ ∈ Γ(E1), on Γ,

∂u
∂τ |Γ ∈ Γ(Eθ), on Γ.

Hence, the metric e2ug is the flat metric we want by Lemma 7.5.

7.2.3 χ(Σ) > 0 case

The case for χ(Σ) > 0 is much harder than the case χ(Σ) ≤ 0. This is because the energy E

does not have a lower bound anymore, so it is impossible to use the previous method. To

my knowledge, we do not know if the uniformization holds in this case.

In general, even in the sphere case, we may need extra efforts to prove the uniformization.

Readers may refer to [CY88, MT02, Str05, Mal17] for related works.

In the triple junction surface case, there are much more examples with χ(Σ) > 0 since

each component of Γ will increase the Euler characteristic. More precisely, suppose Σ

is a compact triple junction surface with ∂Σ = ∅ and density θ = (1, 1, 1), we denote

genus(Σi) as the genus of each Σi and k as the number of components of Γ. Then χ(Σ) can

be computed by

χ(Σ) = 3k− 2
3

∑
i=1

genus(Σi).

So χ(Σ) might be very large even if some of Σi has a non-zero genus.

Remark 7.15. For the simplest case, it is unclear if there is only one conformal structure on the

standard triple junction spheres (the union of three disks by identifying their boundary).

From the examples in Section 7.3, we have learned that the space of conformal structure (e.g.,

moduli space) might be quite large (infinite dimension). So it is a surprising result if we can show

that the conformal structure on triple junction spheres is unique.

Moreover, this also has some relations with the minimal triple junction surfaces in sphere. Please

see Section 7.6 for details.
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7.3 Some examples

To better illustrate uniformization, let us give some examples to explain what would happen

after uniformization.

Let us take Σ1 as the union of a disk and a torus with an open disk removed. Take Σ2, Σ3

to be the surfaces diffeomorphic to annular regions. Then we identify their boundaries as

shown in the left side of Figure 7.1 to get a triple junction surface Σ. We have used colored

curves to mark Γ. We will choose θ = (1, 1, 1) for Σ and suppose we have fixed a C(1) metric

on it.

Remark 7.16. Although we assume each Σi to be connected in definitions of triple junction surfaces,

we can allow them to have more than one component. All the previous results are held for this case,

including uniformization.

Σ1

Σ2

Σ3

Σ1
Σ1

Σ1
Σ2, Σ3

Figure 7.1: Uniformization of Σ

Note that χ(Σ) = 0. Hence according to Theorem 7.14, we can find a new metric g,

which is conformally equivalent to g such that the Gaussian curvature of g is zero. So we

may identify each Σi as a region in R2 with standard Euclidean metric. For each Riemann

torus, we know it is conformally equivalent to a parallelogram in R2 by gluing their opposite

edges. Hence, after uniformization, we may suppose the torus part of Σ1 is just a rectangle

with a disk removed for simplicity. In Figure 7.1, we have drawn this rectangle, and we use
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black arrows to mark the way to glue it to form the torus part of Σ1. For the disk part, we

may assume it is a disk in R2.

For Σ2, Σ3, we can suppose they are isometric to each other. Since we have condition

∑3
i=1 κi

g = 0, we get κ2
g = κ3

g = − 1
2 κ1

g. So, each component of ∂Σ2 or ∂Σ3 will be the half-circle

with twice the radius of the corresponding circles in ∂Σ1. So we draw a half annular region

in R2 with some boundary part identified as shown in Figure 7.1.

It would be great if every g can be described in Figure 7.1 after uniformization. In

general, we might not have such a nice result. We do not know whether κg will be locally

constant on Γ. For a general metric g on Σ, we may only get a weird boundary curve as

shown in Figure 7.2

Σ1

Σ2

Σ3

Σ1
Σ1

Σ1
Σ2, Σ3

Figure 7.2: Another possible uniformization result of Σ

From this example, we may note that the geodesic curvature of Γ in each Σi might

have many possibilities. Recall that for a closed Riemann surface, we know the class of

conformal structure (moduli spaces) on it would have some manifold structure of finite-

dimensional. The behavior of the above examples suggests we may not be able to get

such finite-dimensional manifold structure anymore. One possible way is to seek a weaker

uniformization for triple junction surfaces. This is the topic I would like to talk about in the

next section.
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7.4 Weak uniformization

Suppose we want to extend the meaning of conformal equivalence, according to the example

in the last section. In that case, we might need to change the C(0) triple junction structure

on Σ (find another identification on Γ̊i). This thought leads to the following definitions.

Definition 7.17. Let Σ be a triple junction surface with given C(1) metric g. We say a new

metric g together with three diffeomorphisms, ϕi : Γ→ Γ̊i is weakly conformal to g if each gi

is conformal to gi on Σi and g will be a C(1) metric under new C(0) triple junction structure.

Hence, under weak conformal equivalence conditions, we can impose more conditions

on the metric g after uniformization. For instance, we may want to ensure the geodesic

curvature is locally constant on Γ.

This is one of the problems we may ask.

Problem 7.18 (Weak uniformization). Suppose Σ is a triple junction surface with given C(1)

metric g such that ∂Σ = ∅. Can we find a new metric g which is weakly conformal to g such that the

geodesic curvature of boundary κi
gi is constant on each component of Γ and it has constant Gaussian

curvature in the interior of Σ?

Remark 7.19. Although we require g to be a C(1) metric on Σ, we may only need to assume it is an

arbitrary metric on Σ. This is because the weak uniformization may change the C(0) triple junction

structure, so it is not necessary to assume g is C(1). We only need to ensure that the new metric g

should be a C(1) metric under the new C(0) triple junction structure.

This problem has been solved if χ(Σ) ≤ 0 and Γ is connected. This is the main result in

[Wan21b]. Let us summarize it here.

Theorem 7.20. Suppose Σ is a triple junction surface with given C(1) metric and ∂Σ = ∅. We also

assume density θ = (1, 1, 1) and Γ is connected, then we may find g which is weakly conformal to g

such that gi is a hyperbolic metric and it has constant geodesic curvature on Γ.

Remark 7.21. Although we have assumed θ = (1, 1, 1) in Theorem 7.20, we can show that this
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theorem is valid for general density θ on Σ. The proof is an easy modification of the methods in

[Wan21b].

The key steps in the proof of Theorem 7.20. Let Li(g) denote the length of Γ under metric gi. In

view of the definition of weak uniformization, we only need to find a hyperbolic metric gi on

each Σi, conformal to gi, such that Li(g) = Lj(g) for 1 ≤ i, j ≤ 3 and Γ has constant geodesic

curvature under metric gi with ∑3
i=1 κi

gi ≡ 0. This can be completed by the following

theorem.

Theorem 7.22. Let M be a smooth, compact oriented surface with a connected boundary. We fix

a metric g on M. Then for any L ∈ (0,+∞), there is a metric g, conformal to g, such that the

following results hold,

• The length of boundary ∂M is L.

• ∂M has constant geodesic curvature c = c(L) ∈ R.

Moreover, the function L → Lc(L) is continuous and strictly increasing with the following

limits,

lim
L→0

Lc(L) = 2πχ(M), lim
L→+∞

Lc(L) = +∞.

The proof for Theorem 7.22 is an extension of the work [Rup21]. Readers may refer to

[Wan21b] for details.

Now we define the function ci(L) for each L ∈ (0,+∞) by choosing M = Σi in Theorem

7.22. Hence, the function C(L) = ∑3
i=1 Lci(L) is continuous and strictly increasing with

limL→0 C(L) = 2πχ(Σ) and limL→∞ C(L) = +∞. Note that χ(Σ) < 0, we can find unique

L0 ∈ (0,+∞) such that C(L0) = 0.

For such L0, we can choose gi based on Theorem 7.22 and we know ∑3
i=1 ci(L0) = 0.

Hence g = (g1, g2, g3) is the metric we want.

Remark 7.23. Note that the weak uniformization for the standard triple junction sphere is trivial.

For any gi on disk, we know it is conformal to the metric that appeared in the standard half sphere.
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Clearly, we can glue the boundary of the standard half sphere to get a triple junction surface. Hence,

it has a unique weak conformal structure.

Remark 7.24. For the weak uniformization, we may conjecture that we can establish a finite-

dimensional manifold-like structure on moduli spaces of weak conformal structure on triple junction

surfaces.

7.5 Examples of weak uniformization

In Section 7.3, we have learned an example shown in Figure 7.1.

Here are more examples of the possible results of weak uniformization.

The first one is shown in Figure 7.3. We choose Σ1, Σ2 as two isometric torus with a

disk removed and choose Σ3 as a disk. We identify their boundaries to get a triple junction

surface Σ.

Σ1

Σ2

Σ3

Σ1, Σ2
Σ3

Figure 7.3: Weak uniformization, first example

Note that χ(Σ) = −1 in this case. So we may identify each Σi to be a domain in a

hyperbolic space after uniformization. For the surface Σ1, Σ2 in a hyperbolic space shown

in Figure 7.3, we may glue the black curves to get a parallelogram-type region with a disk

removed and then glue its red boundary to get a torus without a disk. We also view Σ3 as a

small disk in hyperbolic space.
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The second one is shown in Figure 7.4. We will choose Σ1 as the genus-two surface with

a disk removed and Σ2 and Σ3 as the disk. We also have χ(Σ) = −1 for this case. These

examples show that there are many different types of triple junction surfaces even when

they have the same Euler characteristic. We may use same notations to mark the way of

uniformization in Figure 7.4.

Σ2

Σ3

Σ1

Σ2, Σ3

Σ1

Figure 7.4: Weak uniformization, second example

7.6 The first non-trivial eigenvalue of triple junction surfaces

This section shows that we may establish the connection between the first non-trivial

eigenvalue and minimal triple junction surfaces in the unit spheres. This part is similar to

the result in [LY82]. Since there are many things we do not know regarding the conformal

structure, there might be many open problems in this direction.

Let us fix a triple junction surface Σ with a conformal structure J. We will suppose

∂Σ = ∅ in this section. We say a map φ : Σ → Sn is conformal if each φi : Σi → Sn is a

smooth conformal map and it satisfies ∑3
i=1 θiτi = 0. Here, we will choose τ as the unit

outer normal of Γ as its triple junction structure.
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Let G be the group of all conformal diffeomorphisms on Sn. We can define the n-conformal

volume of φ as

VJ(n, φ) := sup
g∈G

∫
Σ

θ |∇(g ◦ φ)|2 dΣ.

Geometrically, it is the supremum of the volume of Σ under map g ◦ φ in Sn with the

density θ. We define the n-conformal volume of Σ as

VJ(n, Σ) := inf
φ, conformal

VJ(n, φ).

The first thing we note is that we have a lower bound of the conformal volume as follows.

Proposition 7.25. For the conformal volume defined above, we have

VJ(n, Σ) ≥ 2π
3

∑
i=1

θi.

Proof. To see this point, we can use the conformal map gk ∈ G on the sphere to blow up a

point on Γ. A similar argument in [LY82] for Fact 2 implies that we can choose a sequence

of gk ∈ G such that the limit of the image of gk ◦ φ contains three half-spheres with density

θ. So we know VJ(n, φ) ≥ 2π ∑3
i=1 θi. This will finish the proof.

Now, we can state our theorem of the relationship between the first non-trivial eigenvalue

and the conformal area.

Theorem 7.26. Suppose Σ defined above with a C(1) metric g0 which induces the conformal structure

J. We suppose λ is the first non-trivial eigenvalue for the Laplacian defined on space H1
1(Σ) on Σ.

Then

λV(Σ) ≤ 2VJ(n, Σ), (7.11)

for all n where VJ(n, Σ) is well-defined. The equality holds will imply Σ can be minimally immersed

into Sn.

Here, we write V(Σ) as the volume of Σ under metric g0 defined as V(Σ) :=
∫

Σ θdΣ.
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We say an eigenvalue is non-trivial if the corresponding eigenfunction is not a locally

constant function. Since the Laplacian has zero as its first eigenvalue, we suppose λ is the

second eigenvalue.

Remark 7.27. The first eigenvalue is simple in this case since we require the operator to be defined

on H1
1(Σ).

Proof of Theorem 7.26. Let φ be a conformal map of Σ to Sn with VJ(n, φ) ≤ VJ(n, Σ) + ε for

ε > 0 small.

We write xk as the coordinate functions on Rn+1. Note that by the same balancing

argument that appeared in the proof of Theorem 1 in [LY82], we can find an element g ∈ G

such that ∫
Σ

θxk ◦ g ◦ φdΣ = 0, ∀1 ≤ k ≤ n + 1. (7.12)

On the other hand, we also have

n+1

∑
k=1

∫
Σ

θ(xk ◦ g ◦ φ)2dΣ =
∫

Σ

(
n+1

∑
k=1

(xk)
2

)
◦ g ◦ φθdΣ = V(Σ), (7.13)

n+1

∑
k=1

∫
Σ
|∇(xk ◦ g ◦ φ)|2 θdΣ =

∫
Σ

n+1

∑
k=1

(g ◦ φ)∗(θ |∇xk|2 dSn)

= 2
∫

Σ
(g ◦ φ)∗(θdSn) ≤ 2VJ(n, φ) ≤ 2(VJ(n, Σ) + ε), (7.14)

where dSn denotes the area elements on sphere Sn. Note that we have used each Σi is a

minimal conformal immersion to get ∑n
k=1 |∇xk|2 = 2.

Since the first eigenfunction space only contains constant functions, we know λ can be

characterized by

λ = inf
u∈H1

1 (Σ),
∫

Σ uθdΣ=0.

∫
Σ |∇u|2 θdΣ∫

Σ u2θdΣ
, (7.15)

in view of Theorem 5.14.

Hence, by identity (7.12), we can choose u by xk ◦ g ◦ φ and using equations (7.13), (7.14)

to get

λ
n+1

∑
k=1

∫
Σ
(xk ◦ g ◦ φ)2θdΣ ≤

n+1

∑
k=1

∫
Σ
|∇(xk ◦ g ◦ φ)|2 θdΣ,
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which implies λV(Σ) ≤ 2(VJ(n, Σ) + ε). Hence,

λV(Σ) ≤ 2VJ(n, Σ).

Now let us suppose the equality (7.11) holds. Up to a scaling, we suppose V(Σ) = 1.

Similar as in the proof that appeared in [LY82] (essentially the same), we may find a sequence

of φj such that the following things hold for some N with 1 ≤ N ≤ n + 1,

lim
j→∞

VJ(n, φj) = VJ(n, Σ), (7.16)∫
Σ

xk ◦ φjθdΣ = 0, (7.17)

2VJ(n, φj) ≥
n+1

∑
k=1

∫
Σ

∣∣∇xk ◦ φj
∣∣ θdΣ ≥ 2

n+1

∑
k=1

∫
Σ
(xk ◦ φj)

2θdΣ, (7.18)

lim
j→∞

N

∑
k=1

∫
Σ
(xk ◦ φj)

2θdΣ = V(Σ), (7.19)

lim
j→∞

∫
Σ
(xk ◦ φj)

2θdΣ = 0 for N + 1 ≤ k ≤ n + 1. (7.20)

In view of (7.16), we may suppose xk ◦ φj → ψk weakly in H1
1(Σ) and strongly in

L2(Σ). Hence, the above inequality together with (7.15) implies ψk are the eigenfunctions

corresponding to the eigenvalue 2 and ψk ≡ 0 for N + 1 ≤ j ≤ n + 1. This will imply

ψk ∈ C(1)
E1,Eθ

(Σ) for each 1 ≤ k ≤ N and solve the equation −∆ψk = 2ψk.

Note that we have ∑N
i=1 ψ2

i = 1 on Σ, we can choose ψ := (ψ1, · · · , ψN) to be the

smooth conformal immersion of Σ to SN−1. Taking derivative over |ψ|2 = 1 implies

|∇ψ|2 = 2 |ψ|2 = 2. Hence, ψ will be an isometric map on Σ. Recall that from first variation

formula (cf. Subsection 4.4.1), we know an immersion φ : Σ → Sn is a minimal triple

junction surface if and only if φ satisfies the following equations,
−∆Σφk = 2φk, in Σ, ∀1 ≤ k ≤ N,

∑3
i=1 θiτi = 0, on Γ.

(7.21)

The second condition is equivalent to the condition ∂φk
∂τ |Γ ∈ Γ(Eθ) for each k. Hence, we

know ψ is an isometric minimal immersion of Σ.
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In particular, for any triple junction sphere Σ with a conformal structure J, we know it

is minimally isometric immersed into a unit sphere Sn with metric in conformal class J by

Theorem 7.26 if it can be conformally immersed into Sn. So the conformal structure on the

triple junction sphere is closely related to the minimal triple junction spheres in Sn. If we

indeed know the information of conformal structure on Σ, we may answer the uniqueness

of minimal triple junction spheres in Sn. Conversely, if we can construct other non-trivial

minimal triple junction spheres, we can also get some results about conformal structures on

Σ.
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